Все схемы ракетных двигателях и все принципы работы
ВЕ-4 против РД-180
С ообщение о получении первого двигателя BE-4 United Launch Alliance (ULA) опубликовала в своем твиттере. Как рассказал представитель Blue Origin изданию Space News, силовая установка не является серийной и будет использоваться для испытаний вместе с носителем. Второй двигатель BE-4 планируется поставить до конца июля.
Российскими двигателями РД-180 оснащаются ракеты Atlas, на замену которым придут носители Vulcan — на них и будут ставить BE-4. Ракеты Atlas используют для критически важных космических запусков, осуществляемых в интересах национальной безопасности Соединенных Штатов.
Консультанты Конгресса США считают, что альтернативы российскому ракетному двигателю не будет как минимум до 2030 года. Об этом сообщал телеканал RT со ссылкой на доклад аналитиков для Конгресса.
Даже в случае плавного и осуществленного по графику перехода от РД-180 к другим двигателям и ракетам-носителям, показатели результативности и надежности, которые достигнуты к настоящему времени при использовании российского двигателя, удастся воспроизвести не ранее 2030 года
По их мнению, даже в случае плавного и осуществленного по графику перехода от РД-180 к другим двигателям и ракетам-носителям, показатели результативности и надежности, которые достигнуты к настоящему времени при использовании российского двигателя, удастся воспроизвести не ранее 2030 года.
Первый РД-180 поставили в США в 1999 году. Из-за обострения отношений между Москвой и Вашингтоном в 2015 году Конгресс запретил закупки РД-180, однако позже отменил ограничения из-за невозможности найти им замену.
За все время американцы получили 116 двигателей. Реализовано 90 пусков, все успешные. Космические запуски с использованием РД-180 включают миссию к Плутону «Новые горизонты» (2006), к Луне LRO (2009), миссию аппарата для исследования Солнца «Обсерватория солнечной динамики» (2010), миссию к Юпитеру «Юнона» (2011), миссии к Марсу MRO (2005), «Марсианская научная лаборатория» (2011), MAVEN (2013) и InSight (2018), миссию за грунтом астероида OSIRIS-REx (2016).
Создан двигатель в середине 1990-х годов на основе мощнейшего советского РД-170, производится в НПО «Энергомаш» имени академика В. П. Глушко. Проект РД-180 разработан под руководством ученого и конструктора Бориса Каторгина. При его непосредственном участии в СССР была заложена основа создания высокоэффективных жидкостно-реактивных двигателей, одним из представителей которого и является РД-180.
Первоначально эти двигатели в варианте РД-170 были разработаны и успешно применены для носителя «Энергия», его боковых блоков, позже использованных как ракета-носитель среднего класса «Зенит». Она применялась для проекта «Морской старт». В рамках последнего было произведено более 30 пусков, дальнейшее сотрудничество с разработчиком и изготовителем «Зенита» прекратилось, поскольку он находится на территории Украины. Было остановлено и производство двигателей РД-170.
«Двигатель РД-180 был и остается самым совершенным в мире, если это совершенство измерять по такой характеристике, как удельный импульс, и если принимать во внимание надежность»
«Энергомаш» оперативно отреагировал на изменение конъюнктуры рынка и перешел на модифицированный под заказчика вариант двигателя РД-170, получивший обозначение РД-180. Практически это был тот же самый двигатель, но если у РД-170 четыре камеры, то у РД-180 —только две, при этом турбонасосный агрегат остался прежним.
«Двигатель РД-180 был и остается самым совершенным в мире, если это совершенство измерять по такой характеристике, как удельный импульс, и если принимать во внимание надежность, — рассказал “Стимулу” ведущий научный сотрудник Института космических исследований РАН Натан Эйсмонт. — Этого удалось достичь за счет применения так называемой замкнутой схемы двигателя, когда все топливо (рабочее тело) проходит через камеру и сопло двигателя, а также достижения в камере рекордно высокого давления (заметим, что в рекламируемом американцами новом двигателе давление в камере практически вдвое ниже)».
По словам ученого, двигатель с такими параметрами не может быть отработан за счет численного моделирования процессов в камере сгорания — это можно сделать только в ходе натурных испытаний. А это чрезвычайно дорого и опасно, поскольку любая ошибка при таком давлении (порядка 250 атмосфер) означает взрыв на стенде.
«В “Энергомаше” научились предсказывать развитие процессов, приводящих к взрыву, и мгновенно выключать двигатель, если телеметрические измерения указывают на развитие опасных явлений в камере. Умеют ли это делать американские специалисты? Есть предположения, что нет, — считает Натан Эйсмонт. — Так что говорить, что они достигли обещанного, можно будет после подтверждения заявленных характеристик на уверенном статистическом уровне».
«В “Энергомаше” научились предсказывать развитие процессов, приводящих к взрыву, и мгновенно выключать двигатель, если телеметрические измерения указывают на развитие опасных явлений в камере. Умеют ли это делать американские специалисты? Есть предположения, что нет»
Как отмечает эксперт, объявленный удельный импульс американского двигателя достигается на метановом топливе. Но баки для метана имеют больший объем, чем керосиновые для той же массы, так что здесь неизбежен определенный суммарный проигрыш.
«Кроме того, если мы меняем двигатель, то нужно менять и носитель, так что мгновенно отказаться от РД-180 не получается. Процесс перехода — это годы», — подчеркнул Натан Эйсмонт. По его мнению, если замена двигателя все же пройдет успешно, то потеря американского рынка не приведет к большим убыткам, поскольку с разворачиванием производства «Ангары-5» возникает спрос на РД-191. Этот двигатель в значительной мере является развитием РД-180. Так что «Энергомаш» не пострадает, скорее даже наоборот.
Рапторы Маска. С чем миллиардер намерен превзойти российские ракетные двигатели
В России справедливо принято рассматривать экспорт ракетных двигателей в США как демонстрацию высокого уровня отечественной космической отрасли, по крайней тех ее элементов, которые были разработаны в прошлом тысячелетии. Среди них двигатель РД-180. Несмотря на то что США потратили немало денег на попытки скопировать его, особого успеха на этом направлении добиться не удалось. Поэтому сейчас в Соединенных Штатах разрабатывают с нуля собственную конструкцию, причем технически между ней и РД-180 действительно нет ничего общего.
Такую оценку недавно подтвердил в своем твиттере и Илон Маск, написав: «Стыдно, что Boeing/Lockheed [Martin] нуждается в российском двигателе на [американской ракете] Atlas, но двигатель этот [РД-180] выдающийся».
К сожалению, Маск не сказал о главном: в чем именно сила РД-180, а также почему он при всех своих плюсах не востребован в России и «летает» только в США. При этом сам Маск не просто прохожий в области ракетных двигателей: он уже в 2019 году собирается начать полеты на собственном движке, который — впервые в истории — превзойдет РД-180 и может стать первым настоящим межпланетным двигателем в истории человечества.
Советское наследие
РД-180 с тягой 400 т никогда не использовался отечественным ракетостроением. Зато на советских ракетах летал его предок — РД-170 с тягой 800 т. У РД-170 было четыре камеры сгорания, а у РД-180 их две. Причины урезания просты: РД-170 стоял на «Энергии», которая после гибели СССР оказалась невостребованной. Для такой мощной ракеты у российской космонавтики, с ее скромным финансированием, просто нет никаких целей. Летать к орбитальной станции в 400 км от Земли — ближе, чем от Москвы до Нижнего Новгорода, — можно и на небольших ракетах родом из 1960-х годов, что «Роскосмос» до сих пор и делает. «Энергия» — ракета из 1980-х с полезной нагрузкой 100 т, и ее конструировали совсем не для таких скромных задач.
Однако в США в 1990-х космическая отрасль по-прежнему ставила перед собой большие задачи. Нужна была мощная ракета, а для нее — соответствующий двигатель. Тогда американская сторона обратилась к бывшим советским специалистам. И Борис Каторгин (глава НПО «Энергомаш») пошел на создание «обреза» на базе РД-170. Приглядимся к этому «обрезу» внимательнее.
Жидкостный ракетный двигатель сжигает топливо либо по открытой, либо по закрытой схеме. В открытой топливо/окислитель сгорают в газогенераторе — устройстве для превращения жидкого ракетного топлива в горячий газ, который приводит в действие топливные турбонасосы и после раскручивания турбины этих насосов выбрасывается наружу. Эффективность такой схемы невелика, потому что топливо, прошедшее через газогенератор, в создании тяги ракетного двигателя прямо не участвует. Зато схема проста и именно поэтому ее выбрали для Merlin — двигателя, с которым SpaceX выдавил «Роскосмос» с рынка коммерческих запусков.
В закрытой схеме горячий газ вначале вращает турбину турбонасосного агрегата, а затем подается в камеру сгорания, эффективно участвуя в создании тяги ракетного двигателя. В этой схеме топливо используется полнее, поэтому такие двигатели предпочтительнее для дальних полетов. Проблема в том, что такая конструкция радикально сложнее открытого цикла — горячий газ от газогенератора надо через и так перегревающийся ракетный двигатель подать в камеру сгорания. Это куда сложнее, чем доставлять туда только жидкое (и поэтому очень холодное) топливо, как в открытой схеме.
РД-170 и его «обрез» РД-180 — двигатели закрытой схемы, они более эффективны. РД-170, например, мощнее F-1, на котором американцы летали на Луну, и при этом почти в полтора раза меньше. Ведь в двигателе закрытой схемы можно пропустить больше газа через турбонасос, а значит, можно поднять давление в камере сгорания. И советские конструкторы довели его до 250-260 атмосфер — в разы больше, чем у F-1. Выше давление — меньше размер камеры сгорания. Каждая из пары камер сгорания РД-180 имеет всего 38 см в диаметре, а проходит через нее 0,6 т топлива в секунду.
Нет ничего удивительного в том, что именно на этом двигателе американский New Horizons был направлен к Плутону (и дальше), а Curiosity — к Марсу. В США жидкостных двигателей с закрытым циклом и такой мощности просто не было.
Как отмечал сам академик Каторгин, «в 1990-х, в самом начале американцы думали, что они начнут с нами работать, а года через четыре возьмут наши технологии и будут сами их воспроизводить Прошло уже 17 лет, и они ни один двигатель не воспроизвели. Им сейчас только на стендовое оборудование для этого нужны миллиарды долларов. У нас на «Энергомаше» есть стенды, где в барокамере можно испытывать тот же двигатель РД-170, мощность струи которого достигает 27 млн кВт». США не располагали ни такими стендами, ни достаточно амбициозными игроками двигательного рынка. Ситуация начала меняться только после присоединения к России Крыма, когда Соединенным Штатам стало очевидно, что сотрудничество с Россией в конечном счете все равно обречено, а значит, надо «импортозамещать» РД-180.
Планы Маска
Как это всегда и бывает, импортозамещение и в Америке породит лишь игроков второго ряда — двигатели, созданные в попытке заменить РД-180 будет лишь подобны ему по параметрам. Зато SpaceX на импортозамещение не нацелена, поэтому она уже испытывает другой, значительно более продвинутый ракетный двигатель — Raptor.
От РД-180 его отличают три вещи. Во-первых, Raptor — это метан-кислородный двигатель. Дело в том, что SpaceX планирует летать на нем на Марс и обратно, то есть заправляться придется на Красной планете. Достоверно известно, что там есть сырье для получения метана, а вот в отношении керосина (топливо РД-180) такой уверенности пока нет.
Во-вторых, Raptor использует полнопоточную закрытую схему, еще более продвинутую, чем просто закрытая в РД-180. В отечественном двигателе для получения газа, вращающего турбонасосный агрегат (подающий топливо в камеру сгорания), применяется одна небольшая камера «предварительного» сгорания. В нее подается немного керосина и избыток кислорода. В Raptor есть две камеры «предварительного» сгорания, где получают газ для турбонасосного агрегата: в одной в избытке кислорода сгорает метан, в другой в избыточно насыщенную метаном среду подается кислород. Потом получившиеся там и там газы подаются в камеру сгорания, где полностью догорают, отдавая всю свою энергию.
Поскольку в таком варианте закрытой схемы больше топлива превращается в газ, можно добиться еще более высокого давления в камере сгорания и прохода еще большего количества газов через турбину турбонасосного агрегата. Эти газы уносят с собой избыточное тепло, отчего ресурс такой турбины вырастет. А это особенно важно потому, что Raptor — двигатель многоразовый, рассчитанный на сотни рабочих циклов. Ремонтировать двигатели на Марсе будет непросто — поэтому они должны быть надежными. Наконец, топливо/окислитель в газообразном состоянии горят энергичнее, чем если поступили в камеру сгорания в жидком виде, поэтому удельный импульс двигателя также растет.
Само собой, конструкция эта еще сложнее и амбициознее, чем у РД-180. Смешивать газы из разных газогенераторов до камеры сгорания нельзя, поэтому в Raptor они проходят через два разных турбонасосных агрегата. Те «борются» между собой, что создает низкочастотные пульсации. В СССР полнопоточная закрытая схема пробовалась еще в 1960-х (двигатель РД-270), однако пульсации поставили крест на его нормальной работе. Синхронизировать их удачнее можно, применяя то, чего полвека назад просто не было, — эффективное и сверхбыстродействующее электронное управление турбонасосами.
Третье кардинальное отличие между РД-170/РД-180 и Raptor — в материалах. В турбонасосах нового двигателя будет использоваться специально разработанный «суперсплав» SX500 из семейства инконелей (сплавы на основе никеля и хрома). Он сможет выдерживать давление до 800 атмосфер, как в море на глубине 8 км. Без такого материала создать многоразовые турбонасосные агрегаты было бы крайне сложно.
Будь Маск обычным бизнесменом, он никогда бы не пошел на эту сложную авантюру с двигателем, который еще эффективнее (и сложнее), чем выдающийся РД-180. Ему это просто не нужно: для околоземного космоса его пуски все равно дешевле чем у ракет «Роскосмоса ».
Однако Маск крайне далек от «обычного бизнесмена». Ему нужны полеты туда, куда, на первый взгляд, никакого экономического смысла лететь нет. Глава SpaceX никогда не делал секрета из своей стратегии: регулярные полеты к Марсу сделают возможным его терраформирование (изменение климатических условий). Терраформирование сделает Марс самым ценным активом в истории бизнеса, отчего компания, летающая туда регулярно (и монопольно!) обречена на высочайшую капитализацию. Капитализацию, которая определенно превысит ВВП целого ряда крупных государств Земли.
К счастью для Маска, его цели настолько превосходят цели остальных игроков, что те просто не в состоянии поверить, что он будет их добиваться, хотя он задекларировал их очень давно. Поэтому конкурентов у него в обозримом будущем не появится.
И все это, несмотря на то что тестовая версия Starship — корабля, на котором планируется достичь Марса, — должна полететь уже в 2019 году. А от земли ее оторвут три жидкостных ракетных двигателя, которые — впервые в земной истории — превзойдут по совершенству РД-170/РД-180.
Космическая тяга: сможет ли Россия создать ядерный двигатель для ракет
В России провели испытания системы охлаждения ядерной энергодвигательной установки (ЯЭДУ) — одного из ключевых элементов космического аппарата будущего, на котором можно будет совершать межпланетные полеты. Зачем в космосе нужен ядерный двигатель, как он работает и почему «Роскосмос» считает эту разработку главным российским космическим козырем, рассказывают «Известия».
История атома
Если положить руку на сердце, то со времен Королева ракеты-носители, используемые для полетов в космос, кардинальных изменений не претерпели. Общий принцип работы — химический, основанный на сгорании топлива с окислителем, остается прежним. Меняются двигатели, система управления, виды топлива. Основа путешествий в космосе остается неизменной — реактивная тяга толкает ракету или космический аппарат вперед.
Очень часто можно услышать, что нужен серьезный прорыв, разработка, способная заменить реактивный двигатель, чтобы повысить эффективность и сделать полеты к Луне и Марсу более реалистичными. Дело в том, что в настоящее время едва ли не большая часть массы межпланетных космических аппаратов, — это топливо и окислитель. А что если отказаться от химического двигателя вообще и начать использовать энергию ядерного двигателя?
Сергей Павлович Королев, советский ученый, конструктор и главный организатор производства ракетно-космической техники и ракетного оружия СССР, основоположник практической космонавтики
Идея создания ядерной двигательной установки не нова. В СССР развернутое постановление правительства по проблеме создания ЯРД было подписано еще в далеком 1958 году. Уже тогда были проведены исследования, показавшие, что, используя ядерный ракетный двигатель достаточной мощности, можно добраться до Плутона (еще не утратившего свой планетный статус) и обратно за шесть месяцев (два туда и четыре обратно), потратив на путешествие 75 т топлива.
Занимались в СССР разработкой ядерного ракетного двигателя, однако приближаться к реальному прототипу ученые стали только сейчас. Дело не в деньгах, тема оказалась настолько сложной, что ни одна из стран не смогла до сих пор создать работающий прототип, а в большинстве случаев всё заканчивалось планами и чертежами. В США проводились испытания двигательной установки для полета на Марс в январе 1965 года. Но дальше тестов KIWI проект NERVA по покорению Марса на ядерном двигателе не сдвинулся, да и был он значительно проще, чем нынешняя российская разработка. Китай поставил в свои планы космического развития создание ядерного двигателя поближе к 2045 году, что тоже очень и очень не скоро.
В России же новый виток работы над проектом ядерной электродвигательной установки (ЯЭДУ) мегаваттного класса для космических транспортных систем начался в 2010 году. Проект создается силами «Роскосмоса» и «Росатома» совместно, и его можно назвать одним из самых серьезных и амбициозных космических проектов последнего времени. Головным исполнителем по ЯЭДУ является Исследовательский центр им. М.В. Келдыша.
Ядерное движение
На протяжении всего времени разработки в прессу просачиваются новости о готовности то одной, то другой части будущего ядерного двигателя. При этом в целом, кроме специалистов, мало кто представляет себе, как и за счет чего он будет работать. Собственно, суть космического ядерного двигателя примерно такая же, как и на Земле. Энергия ядерной реакции используется для нагрева и работы турбогенератора-компрессора. Если говорить проще, то ядерная реакция используется для получения электричества, практически точно так же, как и на обычной атомной электростанции. А уже при помощи электричества работают электроракетные двигатели. В данной установке это ионные двигатели высокой мощности.
Испытание ионного двигателя
В ионных двигателях тяга создается путем создания реактивной тяги на базе ионизированного газа, разогнанного до высоких скоростей в электрическом поле. Ионные двигатели есть и сейчас, они испытываются в космосе. Пока у них только одна проблема — практически все они имеют очень небольшую тягу, хоть и расходуют очень мало топлива. Для космических путешествий такие двигатели — прекрасный вариант, особенно если решить проблему получения электричества в космосе, что и сделает ядерная установка. К тому же работать ионные двигатели могут достаточно долго, максимальный срок непрерывной работы самых современных образцов ионных двигателей составляет более трех лет.
Если посмотреть на схему, можно заметить, что ядерная энергия начинает свою полезную работу совсем не сразу. Сначала нагревается теплообменник, затем вырабатывается электричество, оно уже используется для создания тяги ионного двигателя. Увы, более простым и эффективным образом использовать ядерные установки для движения человечество пока не научилось.
В СССР запускались спутники с ядерной установкой в составе комплекса целеуказания «Легенда» для морской ракетоносной авиации, но это были совсем маленькие реакторы, а их работы хватало только на выработку электричества для повешенных на спутник приборов. Советские космические аппараты имели мощность установки в три киловатта, сейчас же российские специалисты работают над созданием установки с мощностью более мегаватта.
Проблемы космического масштаба
Естественно, что проблем у ядерной установки в космосе гораздо больше, чем на Земле, и самая главная из них — это охлаждение. В обычных условиях для этого используется вода, очень эффективно поглощающая тепло двигателя. В космосе же сделать это нельзя, и ядерным двигателям требуется эффективная система охлаждения — причем тепло от них нужно отводить во внешнее космическое пространство, то есть делать это можно только в виде излучения. Обычно для этого в космических кораблях используются панельные радиаторы — из металла, с циркулирующей по ним жидкостью теплоносителем. Увы, такие радиаторы, как правило, имеют большой вес и габариты, кроме того, они никак не защищены от попадания метеоритов.
В августе 2015 года на авиасалоне МАКС была показана модель капельного охлаждения ядерных энергодвигательных систем. В ней жидкость, рассеянная в виде капель, пролетает в открытом космическом пространстве, охлаждается, а затем снова собирается в установку. Только представьте себе огромный космический корабль, в центре которого гигантская душевая установка, из которой вырываются наружу миллиарды микроскопических капель воды, летят в космосе, а затем засасываются в огромный раструб космического пылесоса.
Совсем недавно стало известно, что капельная система охлаждения ядерной двигательной установки была испытана в земных условиях. При этом система охлаждения — это важнейший этап в создании установки.
Теперь дело за тем, чтобы испытать ее работоспособность в условиях невесомости и уже только после этого систему охлаждения можно будет пробовать создать в размерах, требуемых для установки. Каждое такое успешное испытание по чуть-чуть приближает российских специалистов к созданию ядерной установки. Ученые спешат изо всех сил, ведь считается, что вывод ядерного двигателя в космос сможет России помочь вернуть лидерские позиции в космосе.
Ядерная космическая эра
Допустим, это получится, и уже через несколько лет в космосе начнет свою работу ядерный двигатель. Чем это поможет, как это можно будет использовать? Для начала стоит уточнить, что в том виде, в котором ядерная двигательная установка существует сегодня, она может работать только в космическом пространстве. Взлетать с Земли и садиться в таком виде она не может никак, тут пока без традиционных химических ракет не обойтись.
А зачем в космосе? Ну слетает человечество до Марса и Луны быстро, и всё? Не совсем так. В настоящее время все проекты орбитальных заводов и фабрик, работающих на орбите Земли, стопорятся из-за отсутствия сырья для работы. Нет смысла строить что-либо в космосе до тех пор, пока не найден способ выводить на орбиту большое количество требуемого сырья, например металлической руды.
Но зачем поднимать их с Земли, если можно, наоборот, привезти из космоса. В том же поясе астероидов в Солнечной системе есть просто огромные запасы различных металлов, в том числе и драгоценных. И вот в таком случае создание ядерного буксира станет просто палочкой-выручалочкой.
Астероид Психея является одним из самых загадочных объектов в Солнечной системе, содержит огромные запасы различных металлов
Привезти на орбиту огромный платино- или золотосодержащий астероид и начать его разделывать прямо в космосе. По расчетам специалистов такая добыча с учетом объема может оказаться одной из наиболее выгодных.
А есть ли менее фантастическое применение ядерному буксиру? Например, с его помощью можно развозить по нужным орбитам спутники или привозить в нужную точку пространства космические аппараты, например на лунную орбиту. В настоящее время для этого используются разгонные блоки, например российский «Фрегат». Они дорогие, сложные и одноразовые. Ядерный буксир сможет подхватывать их на низкой околоземной орбите и доставлять куда необходимо.
Аналогично и с межпланетными путешествиями. Без быстрого способа доставлять грузы и людей на орбиту Марса шансов начать колонизацию просто нет. Ракеты-носители нынешнего поколения будут делать это очень дорого и долго. До сих пор длительность полета остается одной из самых серьезных проблем при полете к другим планетам. Выдержать месяцы полета на Марс и обратно в закрытой капсуле космического корабля — задача не из простых. Ядерный буксир сможет помочь и тут, существенно сократив это время.
Необходимо и достаточно
В настоящее время всё это выглядит фантастикой, но до тестирования прототипа, как утверждают ученые, остаются считаные годы. Главное, что требуется, это не только завершить разработку, но и сохранить в стране необходимый уровень космонавтики. Даже при падении финансирования должны продолжать взлетать ракеты, строиться космические аппараты, работать ценнейшие специалисты.
Иначе один атомный двигатель без соответствующей инфраструктуры делу не поможет, для максимальной эффективности разработку будет очень важно не просто продать, но использовать самостоятельно, показав все возможности нового космического транспортного средства.
Пока же всем жителям страны, не завязанным на работе, остается только посматривать на небо и надеяться, что у российской космонавтики всё получится. И ядерный буксир, и сохранение нынешних возможностей. В другие исходы и верить не хочется.
Термодинамика
Новая физическая идея — использование детонационного горения вместо обычного, дефлаграционного — позволяет радикально улучшить характеристики реактивного двигателя.
Говоря о космических программах, мы в первую очередь думаем о мощных ракетах, которые выводят на орбиту космические корабли. Сердце ракеты-носителя — ее двигатели, создающие реактивную тягу. Ракетный двигатель — это сложнейшее энергопреобразующее устройство, во многом напоминающее живой организм со своим характером и манерами поведения, которое создается поколениями ученых и инженеров. Поэтому изменить что-то в работающей машине практически невозможно: ракетчики говорят: «Не мешай машине работать. » Такой консерватизм, хотя он многократно оправдан практикой космических пусков, все же тормозит ракетно-космическое двигателестроение — одну из самых наукоемких областей деятельности человека. Необходимость изменений назрела уже давно: для решения целого ряда задач нужны существенно более энергоэффективные двигатели, чем те, которые эксплуатируются сегодня и которые по своему совершенству достигли предела.
Нужны новые идеи, новые физические принципы. Ниже речь пойдет именно о такой идее и о ее воплощении в демонстрационном образце ракетного двигателя нового типа.
Дефлаграция и детонация
В большинстве существующих ракетных двигателей химическая энергия горючего преобразуется в тепло и механическую работу за счет медленного (дозвукового) горения — дефлаграции — при практически постоянном давлении: P=const . Однако, кроме дефлаграции, известен и другой режим горения — детонация. При детонации химическая реакция окисления горючего протекает в режиме самовоспламенения при высоких значениях температуры и давления за сильной ударной волной, бегущей с высокой сверхзвуковой скоростью. Если при дефлаграции углеводородного горючего мощность тепловыделения с единицы площади поверхности фронта реакции составляет
1 МВт/м2, то мощность тепловыделения в детонационном фронте на три-четыре порядка выше и может достигать 10000 МВт/м2 (выше мощности излучения с поверхности Солнца!). Кроме того, в отличие от продуктов медленного горения, продукты детонации обладают огромной кинетической энергией: скорость продуктов детонации в
20-25 раз выше скорости продуктов медленного горения. Возникают вопросы: нельзя ли в ракетном двигателе вместо дефлаграции использовать детонацию и приведет ли замена режима горения к повышению энергоэффективности двигателя?
Приведем простой пример, который иллюстрирует преимущества детонационного горения в ракетном двигателе над дефлаграционным. Рассмотрим три одинаковых камеры сгорания (КС) в виде трубы с одним закрытым и другим открытым концом, которые заполнены одинаковой горючей смесью при одинаковых условиях и поставлены закрытым концом вертикально на тягоизмерительные весы (рис. 1). Энергию зажигания будем считать пренебрежимо малой по сравнению с химической энергией горючего в трубе.
Рис. 1. Энергоэффективность детонационного двигателя
Пусть в первой трубе горючая смесь зажигается одним источником, например, автомобильной свечой, расположенной у закрытого конца. После зажигания вверх по трубе побежит медленное пламя, видимая скорость которого обычно не превышает 10 м/c, то есть много меньше скорости звука (около 340 м/с). Это означает, что давление в трубе P будет очень мало отличаться от атмосферного Pa , и показания весов практически не изменятся. Другими словами, такое (дефлаграционное) сжигание смеси фактически не приводит к появлению избыточного давления на закрытом конце трубы, и, следовательно, дополнительной силы, действующей на весы. В таких случаях говорят, что полезная работа цикла с P = Pa = const равна нулю и, следовательно, равен нулю термодинамический коэффициент полезного действия (КПД). Именно поэтому в существующих силовых установках горение организуется не при атмосферном, а при повышенном давлении P Pa , получаемом с помощью турбонасосов. В современных ракетных двигателях среднее давление в КС достигает 200-300 атм.
Попытаемся изменить ситуацию, установив во второй трубе множество источников зажигания, которые одновременно зажигают горючую смесь по всему объему. В этом случае давление в трубе P быстро возрастет, как правило, в семь-десять раз, и показания весов изменятся: на закрытый конец трубы в течение некоторого времени — времени истечения продуктов горения в атмосферу — будет действовать достаточно большая сила, которая способна совершить большую работу. Что же изменилось? Изменилась организация процесса горения в КС: вместо горения при постоянном давлении P = const мы организовали горение при постоянном объеме V = const .
Теперь вспомним о возможности организации детонационного горения нашей смеси и в третьей трубе вместо множества распределенных слабых источников зажигания установим, как и в первой трубе, один источник зажигания у закрытого конца трубы, но не слабый, а сильный — такой, который приведет к возникновению не пламени, а детонационной волны. Возникнув, детонационная волна побежит вверх по трубе с высокой сверхзвуковой скоростью (около 2000 м/с), так что вся смесь в трубе сгорит очень быстро, и давление в среднем повысится как при постоянном объеме — в семь-десять раз. При более детальном рассмотрении оказывается, что работа, совершенная в цикле с детонационным горением, будет даже выше, чем в цикле V = const .
Таким образом, при прочих равных условиях детонационное сгорание горючей смеси в КС позволяет получить максимальную полезную работу по сравнению с дефлаграционным горением при P = const и V = const , то есть позволяет получить максимальный термодинамический КПД . Если вместо существующих ракетных двигателей с дефлаграционным горением использовать двигатели с детонационным горением, то такие двигатели могли бы дать чрезвычайно большие выгоды. Этот результат был впервые получен нашим великим соотечественником академиком Яковом Борисовичем Зельдовичем еще в 1940 году, однако до сих пор не нашел практического применения. Основная причина этому — сложность организации управляемого детонационного горения штатных ракетных топлив.
Мощность тепловыделения в детонационном фронте на 3-4 порядка выше, чем во фронте обычного дефлаграционного горения и может превышать мощность излучения с поверхности Солнца. Скорость продуктов детонации в 20-25 раз выше скорости продуктов медленного горения
Демонстрационный образец ДРД, установленный на испытательном стенде
Фото: Сергей Фролов
Импульсный и непрерывный режимы
До настоящего времени предложено множество схем организации управляемого детонационного горения, включая схемы с импульсно-детонационным и с непрерывно-детонационным рабочим процессом. Импульсно-детонационный рабочий процесс основан на циклическом заполнении КС горючей смесью с последующим зажиганием, распространением детонации и истечением продуктов в окружающее пространство (как в третьей трубе в рассмотренном выше примере). Непрерывно-детонационный рабочий процесс основан на непрерывной подаче горючей смеси в КС и ее непрерывном сгорании в одной или нескольких детонационных волнах, непрерывно циркулирующих в тангенциальном направлении поперек потока.
Концепция КС с непрерывной детонацией предложена в 1959 году академиком Богданом Вячеславовичем Войцеховским и долгое время изучалась в Институте гидродинамики СО РАН. Простейшая непрерывно-детонационная КС представляет собой кольцевой канал, образованный стенками двух коаксиальных цилиндров (рис. 2). Если на днище кольцевого канала поместить смесительную головку, а другой конец канала оборудовать реактивным соплом, то получится проточный кольцевой реактивный двигатель. Детонационное горение в такой КС можно организовать, сжигая горючую смесь, подаваемую через смесительную головку, в детонационной волне, непрерывно циркулирующей над днищем. При этом в детонационной волне будет сгорать горючая смесь, вновь поступившая в КС за время одного оборота волны по окружности кольцевого канала. К другим достоинствам таких КС относят простоту конструкции, однократное зажигание, квазистационарное истечение продуктов детонации, высокую частоту циклов (килогерцы), малый продольный размер, низкий уровень эмиссии вредных веществ, низкий уровень шума и вибраций.
Заданный удельный импульс в детонационном ракетном двигателе достигается при значительно меньшем давлении, чем в традиционном жидкостном ракетном двигателе. Это позволит в перспективе кардинально изменить массогабаритные характеристики ракетных двигателей
Рис. 2. Схема детонационного ракетного двигателя
В рамках проекта Минобрнауки создан демонстрационный образец непрерывно-детонационного ракетного двигателя (ДРД) с КС диаметром 100 мм и шириной кольцевого канала 5 мм, который испытан при работе на топливных парах водород—кислород, сжиженный природный газ—кислород и пропан-бутан—кислород. Огневые испытания ДРД проводились на специально разработанном испытательном стенде. Длительность каждого огневого испытания — не более 2 с. За это время с помощью специальной диагностической аппаратуры регистрировались десятки тысяч оборотов детонационных волн в кольцевом канале КС. При работе ДРД на топливной паре водород—кислород впервые в мире экспериментально доказано, что термодинамический цикл с детонационным горением (цикл Зельдовича) на 7-8% эффективнее, чем термодинамический цикл с обычным горением при прочих равных условиях.
В рамках проекта создана уникальная, не имеющая мировых аналогов вычислительная технология, предназначенная для полномасштабного моделирования рабочего процесса в ДРД. Эта технология фактически позволяет проектировать двигатели нового типа. При сравнении результатов расчетов с измерениями оказалось, что расчет точно прогнозирует количество детонационных волн, циркулирующих в тангенциальном направлении в кольцевой КС ДРД заданной конструкции (четыре, три или одну волну, рис. 3). Расчет с приемлемой точностью предсказывает и рабочую частоту процесса, то есть дает значения скорости детонации, близкие к измеренным, и тягу, фактически развиваемую ДРД. Кроме того, расчет правильно предсказывает тенденции изменения параметров рабочего процесса при повышении расхода горючей смеси в ДРД заданной конструкции — как и в эксперименте, количество детонационных волн, частота вращения детонации и тяга при этом увеличиваются.
Рис. 3. Квазистационарные расчетные поля давления (а, б) и температуры (в) в условиях трех экспериментов (слева направо). Как и в экспериментах, в расчетах получены режимы с четырьмя, тремя и одной детонационными волнами
Основной показатель энергоэффективности ракетного двигателя — удельный импульс тяги, равный отношению тяги, развиваемой двигателем, к весовому секундному расходу горючей смеси. Удельный импульс измеряется в секундах (с). Зависимость удельного импульса тяги ДРД от среднего давления в КС, полученная в ходе огневых испытаний двигателя нового типа, такова, что удельный импульс увеличивается с ростом среднего давления в КС. Основной целевой показатель проекта — удельный импульс тяги 270 с в условиях на уровне моря — достигнут в огневых испытаниях при среднем давлении в КС, равном 32 атм. Измеренная тяга ДРД при этом превысила 3 кН.
При сравнении удельных характеристик ДРД с удельными характеристиками в традиционных жидкостных ракетных двигателях (ЖРД) оказывается, что заданный удельный импульс в ДРД достигается при значительно меньшем среднем давлении, чем в ЖРД. Так, в ДРД удельный импульс в 260 с достигается при давлении в КС всего 24 атм, тогда как удельный импульс 263,3 с в известном отечественном двигателе РД-107А достигается при давлении в КС 61,2 атм, которое в 2,5 раза выше. Отметим, что двигатель РД-107А работает на топливной паре керосин—кислород и используется в первой ступени ракеты-носителя «Союз-ФГ». Такое значительное снижение среднего давления в ДРД позволит в перспективе кардинально изменить массогабаритные характеристики ракетных двигателей и снизить требования к турбонасосным агрегатам.
Вот и новая идея, и новые физические принципы.
Один из результатов проекта — разработанное техническое задание на проведение опытно-конструкторской работы (ОКР) по созданию опытного образца ДРД. Основная проблема, которую планируется решить в рамках ОКР,— обеспечить непрерывную работу ДРД в течение длительного времени (десятки минут). Для этого потребуется разработать эффективную систему охлаждения стенок двигателя.
Ввиду своего прорывного характера задача создания практического ДРД, несомненно, должна стать одной из приоритетных задач отечественного космического двигателестроения.
Сергей Фролов, доктор физико-математических наук, Институт химической физики им. Н.Н. Семенова РАН, профессор НИЯУ-МИФИ
Газ вместо керосина
Кадр видеосъемки огневых испытаний ДРД
Фото: Сергей Фролов
В 2014-2016 годах Министерством образования и науки РФ поддержан проект «Разработка технологий использования сжиженного природного газа (метан, пропан, бутан) в качестве топлива для ракетно-космической техники нового поколения и создание стендового демонстрационного образца ракетного двигателя». Проект предусматривает создание демонстрационного образца непрерывно-детонационного ракетного двигателя (ДРД), работающего на топливной паре «сжиженный природный газ (СПГ)—кислород». Исполнитель проекта — Центр импульсно-детонационного горения Института химической физики РАН. Индустриальный партнер проекта — Тураевское машиностроительное конструкторское бюро «Союз». В заявке на проект целесообразность использования в жидкостном ракетном двигателе (ЖРД) непрерывно-детонационного горения объяснялась более высоким термодинамическим КПД по сравнению с традиционным циклом, использующим медленное горение, а целесообразность использования СПГ объяснялась целым рядом преимуществ по сравнению с керосином: повышенным удельным импульсом тяги, доступностью и дешевизной, существенно меньшим сажеобразованием при горении и более высокими экологическими характеристиками. Теоретически замена керосина на СПГ в традиционном ЖРД сулит повышение удельного импульса на 3-4%, а переход от традиционного ЖРД к ДРД — на 13-15%.
PDF-версия
- 26
- 27
- 28
- 29
«Технологическое чудо»: в России начались работы по адаптации двигателя РД-180 для ракеты «Союз-6»
Специалисты российского НПО «Энергомаш» приступили к работам по адаптации двигателя РД-180 для его последующей установки на перспективной ракете «Союз-6». Об этом сообщил генеральный директор предприятия Игорь Арбузов.
По его словам, в рамках программы «Роскосмоса» по созданию новых средств выведения будут производиться ракеты «Союз-5» и «Союз-6», а также сверхлёгкая и сверхтяжёлая ракеты-носители. Причём последняя будет собираться по принципу «технологического конструктора», где каждая часть ракеты — самостоятельное лётное изделие.
«Двигатель РД-180, который имеет уникальную лётную статистику, будет применяться на первой ступени ракеты «Союз-6», а также в центральном блоке ракеты сверхтяжёлого класса. Мы уже начали активные работы по адаптации РД-180 к новой версии ракеты», — заявил Арбузов.
Он добавил, что в ходе модернизации силовой установки будет, в частности, улучшена система аварийной защиты, которая позволяет предупредить возникновение нештатной ситуации. Помимо этого, обновлённый двигатель станет дешевле и надёжней.
«В адаптированном двигателе будет применён весь опыт, который был получен при создании РД-180 и РД-191. И даже больше: это и повышенная защита от возгорания, новые фильтры, покрытия, самые современные материалы и технологии их обработки, новая система управления, быстродействующая система аварийной защиты, способная реагировать на проблему на более ранней стадии и мгновенно отключающая двигатели», — рассказал глава «Энергомаша».
Арбузов также сообщил, что РД-180 может быть использован для создания многоразовых ракет: «Наши двигатели можно использовать до десяти раз, поэтому мы продолжим разрабатывать необходимый задел для создания многоразовых ракет».
Российский «американец»
РД-180 был разработан специалистами НПО «Энергомаш» имени академика Глушко в 1990-х годах. Агрегат создавался на базе самого мощного в мире советского жидкостного двигателя РД-170, по сравнению с которым у него уменьшены масса (с 9,7 до 5,3 тонны) и тяга (с 7904 кН до 4152 кН).
Проект с самого начала предназначался для экспорта в США. В 1996 году «Энергомаш» победил в тендере на создание двигателей для американской ракеты-носителя среднего класса Atlas III. Впоследствии он также устанавливался на более новую модель Atlas V.
Первый полёт американских ракет с РД-180 состоялся в мае 2000 года. По информации «Роскосмоса», за прошедшее время в США было поставлено 116 двигателей, произведено 89 пусков — все они признаны успешными. Такая эффективность является уникальной для мировой космонавтики, подчёркивают в корпорации.
Американские ракеты с установленными на них РД-180 используются в основном для запуска коммерческих и правительственных спутников. Помимо этого, с их помощью NASA осуществляло отправку научных миссий по исследованию Плутона, Луны, Солнца, Юпитера и Марса.
Сотрудничество России и США в этой области несколько осложнилось после введения Вашингтоном в 2014 году экономических санкций против Москвы в связи с ситуацией на Украине. Ряд американских политических деятелей выступили тогда за прекращение закупок РД-180.
На фоне ухудшения российско-американских отношений в Соединённых Штатах активизировались попытки создать замену двигателю «Энергомаша». Среди них — проект BE-4 компании Blue Origin, применение двигателей AR1, которые разрабатываются компаниями Dynetics и Aerojet Rocketdyne, а также производство РД-180 на территории США по российской лицензии.
На сегодняшний день ни одна из этих американских разработок не была завершена. Поставка российских двигателей РД-180 не попала под санкции, она продолжает осуществляться в прежнем режиме, отмечают в «Роскосмосе». Там напомнили, что президент американской компании United Launch Alliance Тори Бруно назвал двигатели РД-180 «технологическим чудом».
Сохранить уникальный проект
Двигатели РД-180 ранее не использовались на российских ракетах, однако в сентябре 2019 года глава «Роскосмоса» Дмитрий Рогозин сообщил, что данный агрегат будет устанавливаться на «Союзе-6».
«Скорее всего, на базе этой ракеты («Союз-5». — RT) мы будем создавать ещё одну ракету, но более пониженного класса — ракету среднего класса «Союз-6», на которой будут летать на основе двигателя РД-180», — цитирует Рогозина Интерфакс.
При этом глава «Роскосмоса» отметил, что использование силовой установки РД-180 позволит сохранить этот уникальный проект и технологические наработки, если США откажутся от закупок данного двигателя.
«Это выход из ситуации, когда американцы прекращают закупки этого двигателя для своих нужд, чтобы мы не потеряли эту уникальную машину, уникальный мотор», — пояснил он.
В декабре 2019 года гендиректор «Энергомаша» Игорь Арбузов уточнил, что речь идёт не о поставляемой в США оригинальной версии РД-180, а о модернизированном варианте двигателя.
Тестовые пуски «Союза-6» планируется осуществлять с российско-казахстанского комплекса «Байтерек». Первый старт намечен на 2025 год. Стартовый стол для запуска данных ракет будет также создан в России. Ориентировочная дата окончания строительства намечена на 2025—2026 годы.
В 2019 году Рогозин также сообщил, что «Союз-5» и «Союз-6» в будущем станут прототипами для составных частей перспективной ракеты сверхтяжёлого класса «Енисей», проект которой сейчас разрабатывается российскими специалистами.
«Что особенно важно: «Союз-5» становится прототипом первой ступени ракеты сверхтяжёлого класса, а «Союз-6» прототипом второй ступени центрального блока ракеты сверхтяжёлого класса. То есть мы, делая на самом деле крайне востребованные средства выведения — рыночные, которые готовы будут драться на рынке с любым американским и иным производителем, — одновременно фактически делаем работу по созданию ракеты сверхтяжёлого класса, уже начинаем отработку её модулей», — отметил Рогозин.
Непревзойдённый результат
Как отметил в разговоре с RT сотрудник Института космических исследований Российской академии наук Натан Эйсмонт, на данный момент РД-180 является лучшим двигателем в своём классе.
«Этот двигатель по своим качествам не превзойдён. Никто в мире подобные агрегаты делать не умеет и, может быть, такая ситуация не изменится и в будущем, поскольку разработка такого двигателя является довольно длительным и дорогостоящим процессом», — заявил он.
Аналогичного мнения придерживается и руководитель Института космической политики Иван Моисеев.
«Технически этот двигатель очень хорош, качественен и очень недорог. Мы продали США свыше 100 таких аппаратов. Чтобы отказаться от его использования, нужно разработать аналог, а на это требуется много времени, может быть, целое десятилетие», — заявил собеседник RT.
Эйсмонт подчеркнул, что отличительной чертой РД-180 является его крайне высокая надёжность — все пуски прошли штатно. По его словам, для создания аналогичной установки мало разработать проект (что само по себе стоит больших денег) — нужны ещё годы испытаний и успешной эксплуатации.
«США продолжают их покупать, всё время заявляя при этом, что хотят отказаться и готовят что-то ему на замену. Но пока заменить не получается. Не в последнюю очередь потому, что РД-180 — исключительно надёжный двигатель. Нет ни одной другой разработки, которую можно было бы с ним по этому параметру сопоставить. Он давно находится в эксплуатации, в ходе которой был накоплен огромный опыт. Этот агрегат хорошо себя зарекомендовал», — считает эксперт.
В этих условиях, отмечает Эйсмонт, США не могут себе позволить отказаться от эксплуатации РД-180 из-за политических соображений, поскольку это связано с большими финансовыми рисками.
«Если американцы вдруг откажутся от РД-180, то тогда придётся отказаться и от ракеты Atlas V, а это повлечёт серьёзные финансовые потери, изменения в программе полётов. И в конечном счёте приведёт к увеличению рисков, так как двигатель с тем же уровнем надёжности сейчас ни сделать, ни найти где-то невозможно. Такова объективная реальность», — сказал аналитик.
В свою очередь, военный эксперт Юрий Кнутов в беседе с RT отметил, что использование базы РД-180 для создания «Союза-6» оправдано с экономической точки зрения.
«Это правильное решение, поскольку мы таким образом используем отработанные на практике схемы, проверенные даже не годами, а десятилетиями. Помимо этого, применение РД-180 поможет снизить конечную стоимость ракеты, так как разработка нового аппарата потребовала бы больших трат. На выходе получится эффективная современная ракета, по цене и качеству конкурентоспособная по сравнению с зарубежными аналогами», — заключил аналитик.