Autoservice-mekona.ru

Автомобильный журнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

В каких пределах может изменяться скольжение асинхронного двигателя

Базовые сведения о частотно-регулируемом электроприводе

Во всех отраслях народного хозяйства, в быту, науке и во многих других сферах человеческой деятельности используются разнообразные технические устройства, предназначенные для реализации технологических процессов с целью выполнения социально-практического заказа, например, получения конечного полезного продукта. Для приведения в движение рабочих органов этих технических устройств и предназначена машина-двигатель, или привод, в качестве которого наиболее часто применяется электрический двигатель.

В общем случае под электроприводом понимают электромеханическую систему, приводящую в движение рабочие органы технического устройства и состоящую из передаточного, электродвигательного, преобразовательного и управляющего устройств. Электропривод, который в качестве преобразовательного устройства использует преобразователь частоты, называется частотно-регулируемый привод (ЧРП).

Принцип частотного регулирования, при котором частота и напряжение питания двигателя могут изменяться в соответствии с установленным соотношением независимо друг от друга, является наиболее эффективным способом управления скоростью асинхронных двигателей. Реализация такого способа определяется тем, что скорость вращающегося магнитного поля статора w согласно выражению (1) пропорциональна частоте источника питания f. Следовательно, изменяя частоту f, можно плавно и в широких пределах регулировать скорость вращения ротора. При этом скольжение s, определяемое по формуле (2), изменяется незначительно и, следовательно, потери, пропорциональные величине скольжения, также изменяются незначительно. Это важное преимущество частотного управления асинхронным двигателем позволяет реализовать энергосберегающие технологии как для двигателей с фазным ротором, так и с короткозамкнутым.

Из изложенного вытекает, что для частотно-регулируемого асинхронного привода требуется прежде всего источник переменного тока регулируемой частоты. Использование для этих целей синхронных генераторов с регулируемой скоростью вращения не оправдывается ни техническими, ни экономическими соображениями. Только при появлении статических полупроводниковых преобразователей возникла реальная возможность создания частотно-регулируемых промышленных электроприводов. Их основу составляют преобразователь частоты и асинхронный двигатель (ПЧ-АД).

Основной выходной координатой силового привода является электромагнитный момент. При частотном управлении его значение зависит от частоты и напряжения источника переменного тока (см. уравнение (3)). Поэтому наличие двух независимых каналов управления дает возможность реализовать в системах ПЧ-АД различные законы регулирования с скорости. Если должна сохраняться постоянной перегрузочная способность двигателя, то в первом приближении частотный закон управления имеет вид (9).

Управление двигателем в соответствии с соотношением (9) при ненасыщенной магнитной системе позволяет сохранять практически неизменным коэффициент мощности и абсолютное скольжение электропривода, при этом его КПД не зависит от скорости. В этом и заключается основное достоинство частотного управления.

В зависимости от видов нагрузки закон управления напряжением и частотой имеет различные формы. Например, при постоянном моменте нагрузки (Mc=const) соотношение (9) приобретает вид U/f=const; при постоянной мощности (Мс=кw -1 ) — U²/f=const; при «вентиляторной» нагрузке (Мс= кw -2 ) — U/f²=const. Механические характеристики привода ПЧ-АД, сохраняющего постоянство перегрузочной способности двигателя, приведены на рис. 1.


Рис.1. Механические характеристики привода ПЧ-АД: а) при постоянном моменте; б) при постоянной мощности; в) при вентиляторной нагрузке.

Таким образом, для того, чтобы реализовать принцип частотного управления асинхронным двигателем, необходимо в соответствии с выражением (9) и с учетом вида нагрузки управлять напряжением, подводимым к статору двигателя, взаимосвязано с изменением частоты питания.

Функцию преобразования параметров электрической энергии питающей сети к таким значениям, которые необходимы для нормальной работы приводного двигателя, а также функцию дозирования величины электрической энергии, подводимой к двигателю для регулирования его скорости и выполняет преобразовательное устройство.

В системах регулируемого электропривода находят применение все основные типы преобразовательных устройств: выпрямители, преобразующие переменное напряжение в постоянное; инверторы, осуществляющие обратное выпрямителям преобразование энергии; непосредственные преобразователи частоты; регуляторы переменного и постоянного напряжения, обеспечивающие преобразование уровня напряжения без изменения его частоты.

Эффективность применения и перспективы дальнейшего использования тех или иных преобразовательных устройств в значительной степени определяется совершенством свойств силовых полупроводниковых приборов.

Следует учитывать главную особенность силовых преобразователей электрической энергии: независимо от типа и свойств, применяемых силовых полупроводниковых приборов они должны использоваться только в ключевых режимах работы, для которых свойственны два устойчивых состояния полного включения (максимальная электрическая проводимость) и полного выключения (минимальная проводимость). Исключением являются только динамические процессы, связанные с переходами из одного устойчивого состояния в другое. В состояниях ключевого режима потери активной мощности P=UI в полупроводниковых приборах малы, поскольку один из сомножителей этого произведения (ток I или напряжение U) , имеет минимально возможное значение. Это и обеспечивает высокий КПД полупроводниковых преобразователей электрической энергии.

Наиболее распространенным типом преобразователей частоты является двухступенчатое преобразовательное устройство, выполненное на основе выпрямителя трехфазного переменного напряжения сети и автономного инвертора напряжения (АИН), преобразующего выпрямленное напряжение в переменное трехфазное с регулируемой частотой и амплитудой. Несмотря на двухкратность преобразования энергии и обусловленное этим некоторое снижение КПД, такие преобразователи частоты (с промежуточным звеном постоянного тока) получили наибольшее распространение в различных типах электроустановок. В отличие от АИТ, содержащего на своем входе в цепи постоянного тока индуктивность, обязательным элементом на входе АИН является параллельно включенная емкость. Поэтому в результате подключений полупроводниковыми ключами этой емкости к выходным зажимам АИН осуществляется формирование кривых напряжения нагрузки. При использовании неуправляемого выпрямителя обеспечивается высокое значение коэффициента мощности на входе, а регулирование величины выходного напряжения может осуществляться методом широтноимпульсной модуляции (ШИМ).

Читать еще:  Холостой ход на горячем двигателе на гольф

Метод двуполярной ШИМ является частным случаем ШИР, при котором соотношение ширины импульсов противоположной полярности на протяжении каждой полуволны выходного напряжения изменяется таким образом, чтобы среднее значение каждой пары импульсов за период их частоты следования (частоты ШИМ) равнялось мгновенному значению основной гармоники выходного напряжения в середине интервала усреднения. Кривая выходного напряжения (однофазного) АИН для такой двуполярной ШИМ показана на рис.2.

Рис.2. Форма выходного напряжения однофазного АИН с ШИМ U(1)аин — основная гармоника.

При формировании выходных напряжений трехфазного АИН каждая из фаз нагрузки в любой момент времени оказывается подключенной к одному из двух полюсов входного постоянного напряжения. Поэтому в момент подключения данной фазы к одному полюсу возможны три комбинации подключений двух других фаз:
1) обе фазы подключены к тому же полюсу;
2) одна из фаз подключена к тому же полюсу, а другая к противоположному;
3) обе фазы подключены к противоположному полюсу напряжения. Следовательно, мгновенное напряжение каждой фазы трехфазного АИН может принимать значения, соответствующие пяти уровням. Пример кривой выходного напряжения трехфазного АИН с ШИМ показан на рис. 3. Частота высших гармонических составляющих выходного напряжения определяется частотой ШИМ, которая при использовании в АИН современных транзисторов типа IGBT может без заметного снижения КПД преобразователя повышена до величины более 4кГц. Поэтому, несмотря на значительный уровень амплитуды высших гармоник напряжения АИН, токи ак тивно-индуктивной нагрузки (например, асинхронный двигатель) практически синусоидальны.

Рис.3. Форма выходного напряжения одной фазы трехфазного АИН с ШИМ.

Кратко остановимся на тормозных режимах частотно-регулируемого электропривода. Этот режим может быть осуществлен по принципу динамического торможения при питании обмоток статора двигателя постоянным током от АИН. В случаях, когда эффективность такого торможения оказывается недостаточной, может быть использован принцип генераторного торможения с передачей активной мощности через АИН в цепь постоянного тока преобразователя частоты. Поскольку передача энергии в сеть через неуправляемый выпрямитель невозможна, для предотвращения недопустимого повышения напряжения на емкости фильтра постоянного тока ее разряжают с помощью транзисторного импульсного регулятора на специальный тормозной резистор.

Рис.4. Частотно регулируемый электропривод: В- выпрямитель; ф-фильтр; АИН— автономный инвертор напряжения; УУП- устройство управления преобразователем частоты.

Таким образом, анализ состояния вопроса показал, что оптимальную по энергетическим показателям и по регулировочным и механическим характеристикам структуру современного частотно-регулируемого асинхронного электропривода следует выполнять на основе преобразователя частоты с промежуточным звеном постоянного тока (рис. 4), состоящего из выпрямителя с индуктивно-емкостным фильтром постоянного напряжения и автономного инвертора напряжения, построенного на силовых транзисторах типа IGBT и формирующего основную гармонику выходного напряжения методом широтно-импульсной модуляции. Регулируемый электропривод, силовая часть которого базируется на структуре, представленной на рис. 4, обладает целым рядом достоинств: широким диапазоном регулирования (D=30. 100 и более); высоким коэффициентом полезного действия (без учета двигателя он достигает величины 0,98); высоким коэффициентом мощности (до 0,98); высокой надежностью и компактностью преобразователя и др.

В статье использованы выдержки из каталога продукции и применений компании Триол. Материал взят из свободных источников.

В каких пределах может изменяться скольжение асинхронного двигателя

Асинхронная машина — электрическая машина переменного тока, частота вращения ротора которой не эквивалентна частоте вращения электромагнитного поля, создаваемого током медной обмотки статора. Асинхронные машины — это довольно распространённые электрические машины. Асинхронный означает не одновременный, что имеется ввиду, что частота вращения магнитного поля статора всегда больше частоты вращения ротора у асинхронных двигателей. Работают асинхронные двигатели от сети переменного тока.

Статор обладает цилиндрической формой, собранный из листов стального материала. В пазах сердечника статора уложены обмотки статора, выполненных из обмоточного провода. Оси этих обмоток находятся в пространстве и сдвинуты на угол 120° относительно друг друга. Концы таких обмоток соединяются треугольником или звездой в зависимости от подаваемого напряжения.

Статор асинхронного электродвигателя имеет невыраженные полюсы, т. е. поверхность статора является абсолютно гладкой изнутри. Для того, чтобы сбавить потери на вихревых токах, сердечник статора собирают из тонких штампованных листов стали. Ранее собранный сердечник статора нужно закрепить в корпусе из стали. В пазах статора укладывают обмотку из проволоки из меди. Начала и концы обмоток выводятся на специальный изоляционный щиток, из-за того, что фазовые обмотки статора электродвигателя соединяются «звездой» или «треугольником». Такое устройство статора является очень удобным, так как его обмотки можно включать на различные стандартные напряжения. Когда осуществляется подача напряжения на обмотку статора, то в каждой фазе создаётся магнитный поток, изменяемый частотой подаваемого напряжения. Эти потоки сдвинуты на 120° относительно друг друга, как во времени, так и в пространстве. Результирующий поток будет при этом вращающимся.

Читать еще:  Двигатель 15 квт 3 фазы сколько ампер автомат

Своим вращением поток создаёт в проводниках ротора ЭДС. Из-за того, что обмотка ротора входит в замкнутую электрическую цепь, в ней возникает ток, взаимодействующий с магнитным потоком статора, тем самым создавая пусковой момент двигателя, который стремится направить ротор в сторону вращения магнитного поля статора. Ротор начнет вращаться, когда пусковой момент двигателя достигнет значения тормозного момента ротора, а затем превысит его. При этом возникает так называемое скольжение.

Скольжение является крайне важной величиной. При начальном моменте времени скольжение равно единичному значению, но относительная разность частот становится меньше по мере возрастания частоты вращения ротора, из-за чего в проводниках ротора уменьшаются ЭДС и ток, которые влекут за собой уменьшение вращающего момента. Во время режима холостого хода, т.е. когда двигатель совершает работу без нагрузки на валу, скольжение является минимальным значением, но оно возрастает до величины критического скольжения, путем увеличением статического момента. При превышении данного значения, может произойти опрокидывание двигателя, что, впоследствии, приведет к его нестабильной работе. Значение скольжения лежит в диапазоне от 0 до 1, для двигателей общего назначения в номинальном режиме оно составляет 1 — 8 %.

При наступлении равновесия между электромагнитным моментом, который вызывает вращение ротора, и тормозным моментом, который создает нагрузку на валу двигателя, процессы изменения величин прекратятся.

Из этого следует, что принцип работы асинхронного двигателя заключен во взаимодействии токов, наводящимся магнитным полем в роторе и самим вращающимся магнитным полем статора. Когда вращающий момент возникает тогда, когда существует разность частот вращения магнитных полей.

Ротор асинхронного двигателя, как и статор, собирается из штампованных стальных листов. В пазах ротора укладывается обмотка из медных стержней. Торцы этих стержней соединены при помощи медного кольца. Такая обмотка является обмоткой типа «беличьей клетки». При этом медные стержни в пазах не являются изолированными.

В зависимости от конструкции ротора асинхронные электродвигатели различаются на 2 типа: с короткозамкнутым ротором и фазным ротором.

Короткозамкнутый ротор представляет собой сердечник, собранный из стальных листов. В пазах этого сердечника заливается расплавленный алюминий, из-за чего образуются стержни, замкнутые накоротко торцевыми кольцами. Данная конструкция называется «беличьей клеткой». В двигателях с большой мощностью заливаться медь.

Фазный ротор содержит трёхфазную обмотку, практически не отличающуюся от обмотки на статоре. В большинстве случаев концы обмоток фазного ротора соединены звездой, где свободные концы подводятся к контактным кольцам. При помощи щёток, подключенных к кольцам, можно ввести дополнительный резистор в цепь обмотки ротора. Этот резистор нужен для того, чтобы изменять активное сопротивление в цепи ротора, которое способствует уменьшению больших пусковых токов.

Асинхронный двигатель с фазным ротором обычно применяется в электродвигателях с большой мощностью и в случаях, во время начала движения с места, электродвигатель создавал большое усилие, когда это необходимо. Достигается это путем включения в обмотки фазного двигателя пускового реостата.

Короткозамкнутые асинхронные двигатели запускаются двумя способами:

1) Подключением трехфазного напряжения сети к статору двигателя.

2) Снижением напряжения, подводимого к обмоткам статора.

Пуск двигателя в ход происходит с соединения «звездой» обмоток статора, а когда ротор достигает нормального числа оборотов, соединение переключается на форму «треугольника».

При этом способе ток пуска двигателя в подводящих проводах уменьшается в 3 раза если сравнивать с тем током, что возникал бы во время пуска двигателя прямым включением в сеть с обмотками статора, соединенными «треугольником». Но данный способ пригоден лишь в тех случаях, когда статор предназначен для нормальной работы при его соединении «треугольником».

Более простым, дешевым и довольно надежным является асинхронный двигатель с короткозамкнутым ротором, правда этот двигатель имеет некоторые недостатки — малое усилие во время трогания с места и большим пусковым током. Данные недостатки в значительной мере можно устранить путем применения фазного ротора, правда такое применение значительно повысит двигатель в его стоимости и будет требовать пусковой реостат.

Самое большое применение получили машины с трехфазной симметричной разноименно полюсной обмоткой на статоре, которая питается от сети переменного тока. Также применение нашли асинхронные машины с трехфазной или многофазной симметричной разноименно полюсной обмоткой на роторе. Обычно асинхронные машины используются как двигатели, когда как генератор они применяются очень редко.

Асинхронный двигатель ­­­является самым распространенным типом двигателя переменного тока. Если ротор асинхронной машины находится в неподвижном состоянии, либо же частота вращения ротора меньше синхронной, то вращающееся электромагнитное поле проходит через электрические проводники медной обмотки ротора и соответственно индуцирует в них электродвижущую силу, под воздействием которой по медной обмотке ротора двигателя течёт ток. На электрические проводники с током данной обмотки ротора, находящимся в электромагнитном поле медной обмотки возбужденного состояния, действуют силы магнитного воздействия определённого размера. Из-за прикладываемого усилия порождается магнитный вращающий момент, который тянет ротор за электромагнитным полем [2].

Читать еще:  Хендай солярис двигатель какого производителя у него

Если данный вращающий момент достаточно велик, то ротор электрической машины приходит в динамическое вращение, и его средняя рабочая частота вращения соответствует равенству имеющегося магнитного момента тормозному, созданного механической нагрузкой на валу электродвигателя, механическими силами вентиляции, трения в подшипниках и т.д. Частота вращения ротора электрической машины не соответствует частоте вращения электромагнитного поля, т.к. в этом случае угловая скорость вращения электромагнитного поля по сравнению с токопроводящей обмоткой ротора становится равна нулю, в следствии этого электромагнитное поле не будет индуцировать в уже доступной обмотке ротора электродвижущую силу и создавать крутящий момент.

Если ротор электрической машины, которая включена в сеть, вращать при помощи двигателя в направлении вращающегося поля статора, тогда движение ротора по сравнению с полем статора изменится, из-за того, что ротор будет обгонять поле статора.

Скольжение же при этом станет отрицательным, а направления электродвижущей силы Е1, находящейся на обмотке статора, и тока I1 изменятся на противоположное. В результате этого электромагнитный момент ротора также изменит направление превратившись из вращающего в противодействующий. В этих условиях электрическая машина из двигательного режима переходит в генераторный режим, последствием преобразования механической энергии двигателя в электрическую [3].

В следствии того, что в режиме генератора электрической машины, условия создания вращающегося поля статора будут такими же, что и в двигательном режиме, и потребление намагничивающего тока I происходит от сети, то электрическая машина в генераторном режиме обладает определенными свойствами: потребление реактивной энергии от сети, которая необходима для создания вращающегося поля статора, но происходит отдача активной энергии в сеть, получаемой во время преобразования механической энергии двигателя [3]. Работа асинхронных генераторов возможна лишь тогда, когда она происходит в совместной работе с синхронными генераторами, необходимыми как источники реактивной энергии.

В отличие от синхронных генераторов, асинхронные не подвержены опасностям выпадения из синхронизма. Асинхронные генераторы не получили большого распространения. Это объясняется рядом их недостатков в сопоставлении с синхронными генераторами.

Одним из главных недостатков является то, что асинхронные генераторы обладают большой реактивной мощностью, затрачиваемой ими от сети. Величина этой мощности пропорциональна намагничивающему току и даже может достичь 25 – 45 % от номинальной мощности машины [4]. Следовательно, для работы нескольких асинхронных генераторов нужно использовать один синхронный генератор такой по величине мощности, которая равна мощности одного асинхронного генератора.

Без включения в общую сеть, асинхронный генератор может работать и в автономных условиях. Но в этом случае, чтобы получить реактивную мощность необходимую для намагничивания генератора, нужно использовать батарею конденсаторов, которые, в свою очередь, включены параллельно нагрузке на выводах генератора.

Наличие остаточного намагничивания является одним из условий работы асинхронных генераторов, которое необходимо для самовозбуждения генератора. Электродвижущая сила создает небольшой реактивный ток как в обмотке статора, так и в цепи конденсатора, усиливающий остаточный поток. Далее процесс развивается также, как и в генераторе постоянного тока параллельного возбуждения. С помощью изменения емкости конденсаторов можно регулировать величину намагничивающего тока, а также, и величину напряжения генераторов [5]. Из-за чрезмерных величин и высоких стоимостей конденсаторных батарей, асинхронные генераторы с самовозбуждением не получили большого распространения. Следовательно, такие генераторы применяются лишь на вспомогательных электростанциях, в таких как ветросиловые установки.

Тормозной режим электрической машины применяется лишь при необходимости быстрой остановки момента вращения ротора двигателя. Данный режим создается противовключением двигателя. Чтобы его совершить, нужно направить вращение магнитного поля статора в противоположную сторону. Для этого достаточно переключить любую пару проводов, которые соединяют обмотку статора с сетью, посредством изменения порядка следования фаз на зажимах статора. В начальный период времени, после переключения проводов, инерциальные силы вращающихся частей двигателя и исполнительного механизма продолжают совершать вращение ротора в прежнем направлении, когда вращающееся поле статора начинает вращаться в противоположном направлении [1].

В итоге получаем, что электромагнитная мощность машины в режиме тормоза составляет лишь малую долю электрических потерь в роторе. Когда большая часть этих потерь уходит на вращающиеся по инерции части двигателя и исполнительного механизма.

К недостаткам данного способа торможения следует отнести: большие потери энергии, значительные броски тока во время переключения проводов на обмотках статора. Двигатели с контактными кольцами включают сопротивление, чтобы ограничить бросок тока при торможении. Кроме того, во время торможения двигателя данным способом нужно отключить его от сети в момент его остановки, иначе ротор начнет вращаться в другом направлении.

Таким образом, существуют три режима работы асинхронной машины: движущий режим, генераторный режим и режим тормоза. Каждому из данных режимов соответствует определенный диапазон изменения коэффициента скольжения: когда в двигательном режиме скольжение может изменяться от нуля до единицы, в генераторном – от нуля до минус бесконечности, а в тормозном – от единицы до плюс бесконечности.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector