Autoservice-mekona.ru

Автомобильный журнал
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Холостой ход асинхронного двигателя с фазным ротором

Основные нагрузочные свойства асинхронных электродвигателей

Асинхронные двигатели в процессе эксплуатации работают с нагрузками на валу от холостого хода до номинальной. Напряжение и частота сети могут сохранять номинальные значения или длительно изменяться в зависимости от режима работы энергосистемы. Под нагрузочными свойствами асинхронного двигателя при отклонениях напряжения и частоты подразумеваются изменения основных параметров, характеризующих его установившийся режим, -ЭДС магнитного потока, вращающего момента, скольжения и частоты ротора, модуля и фазы тока ротора, намагничивающего тока, модуля и фазы тока статора.

Встречается необходимость использования двигателя для работы в сети с напряжением и частотой, отличающимися от его номинальных значений, в случаях:
а) применения двигателей, рассчитанных на частоту 60 Гц, в сети с частотой 50 Гц;
б) работы двигателя с нормальным соединением обмотки статора в звезду, в сети другого номинального напряжения — при соединении обмотки статора в треугольник;
в) переключения обмотки статора на звезду вместо нормального соединения треугольником для уменьшения потерь активной мощности и потребления реактивной мощности незагруженных двигателей.

Рассмотрим сначала в общих чертax явления, происходящие в двигателе при отклонении от номинальных значений нагрузки на валу (момента сопротивления приводимого двигателем механизма), напряжения и частоты питающей сети. По основным параметрам режима определяются такие важные факторы, как нагрев активных частей двигателя, изменение потерь и КПД, потребление из сети активной и реактивной мощностей, изменение начального вращающего момента при неподвижном роторе (для оценки возможности пуска двигателя при отклонениях напряжения и частоты).

Определим общий характер изменения перечисленных выше величин, исходя из основных соотношений, принимая для упрощения момент сопротивления механизма не зависящим от угловой скорости ротора. Изменение нагрузки на валу двигателя при номинальных напряжении и частоте питающей сети. Рассмотрим влияние увеличения нагрузки на валу на основные параметры установившегося режима. Вследствие увеличения нагрузки угловая скорость ротора несколько снижается, а следовательно, скольжение увеличивается до такого значения, при котором вращающий момент двигателя уравновешивает повышенный момент сопротивления. Поскольку при скольжениях меньше критического сопротивление статора составляет незначительную долю общего сопротивления двигателя, то ЭДС, магнитный поток и намагничивающий ток практически не изменяются при изменении нагрузки.

Увеличение вращающего момента двигателя сопровождается соответствующим увеличением тока ротора. С увеличением скольжения возрастает фазный угол приведенного тока ротора, что приводит к увеличению реактивного тока двигателя, практически равного сумме индуктивного намагничивающего тока и реактивной составляющей приведенного тока ротора. В связи с ростом активной и реактивной составляющих тока статора последний также возрастает при увеличении нагрузки на валу. Увеличение токов ротора и статора обусловливает возрастание потерь в меди обмоток.

У двигателей нормального исполнения с короткозамкиутым и с фазным роторами при нормальной работе с закороченным реостатом угловая скорость ротора при изменении нагрузки в пределах номинальной изменяется незначительно и поэтому мощность на валу увеличивается практически пропорционально моменту сопротивления. В связи с увеличением реактивного тока двигателя при увеличении нагрузки увеличивается реактивная мощность, потребляемая из сети. При уменьшении нагрузки на валу скольжение, ток ротора и его фаза, а также ток статора уменьшаются, что приводит к снижению потребления двигателем из сети активной и реактивной мощностей.

При определении полезной мощности на валу двигателей с повышенным скольжением, а также двигателей с фазным ротором, работающих нормально с регулировочным реостатом, следует учитывать изменение угловой скорости ротора. Изменение напряжения при номинальной частоте. Предположим, что напряжение, подводимое к обмотке статора двигателя, работающего с постоянным моментом сопротивления, уменьшилось. Вследствие уменьшения напряжения уменьшаются ЭДС двигателя и магнитный поток. Вращающий момент двигателя, пропорциональный квадрату напряжения, окажется при прежнем скольжении меньше, чем момент сопротивления, и скольжение двигателя увеличится до такого значения, при котором вновь наступит равенство между указанными моментами.

Увеличение скольжения вызовет возрастание тока ротора и увеличение угла сдвига между приведенным током ротора и напряжением сети. При уменьшении напряжения намагничивающий ток уменьшается, а ток статора, равный геометрической сумме приведенного тока ротора и тока холостого хода, в зависимости от загрузки и соотношения между намагничивающим током и током ротора может увеличиться или уменьшиться. При увеличении напряжения увеличатся ЭДС и магнитный поток, а скольжение и ток ротора уменьшатся. Намагничивающий ток увеличится, а ток статора может увеличиться или уменьшиться в зависимости от загрузки двигателя и указанного выше.

Таким образом, понижение напряжения всегда вызывает увеличение тока ротора, а увеличение напряжения — уменьшение тока ротора. Работа с напряжением, пониженным более чем на 5 % номинального, допустима согласно ГОСТ 183-74 только при условии, что нагрузка двигателя меньше номинальной. При несоблюдении этого обстоятельства возможен перегрев обмотки ротора и, как следствие, ее преждевременный износ. Мощность, развиваемая двигателем, останется практически без изменения, так как угловая скорость ротора изменится незначительно.

Изменение частоты при номинальном напряжении

Рассмотрим случай, когда двигатель с постоянным моментом сопротивления на валу питается при номинальном напряжении от сети с частотой меньше номинальной. Уменьшение частоты вызовет увеличение магнитного потока и увеличение вращающего момента. Поскольку момент сопротивления остается постоянным, скольжение уменьшится так, чтобы сохранилось равновесие между вращающим моментом двигателя при пониженной частоте и моментом сопротивления. Вследствие увеличения потока уменьшится ток ротора, а ток холостого хода увеличится. Ток статора может увеличиться или уменьшиться, так же как для случая повышения напряжения. Таким образом, понижение частоты практически равнозначно увеличению напряжения.

Следовательно, если при понижении частоты соответственно уменьшить напряжение, то магнитный поток, а следовательно, и токи холостого хода, ротора и статора останутся такими же, как и при нормальной работе. При этом будет иметь место некоторое изменение потерь в стали, а следовательно, и активной составляющей тока холостого хода. Эти изменения практически не скажутся на токе статора. Однако существенным отличием от рассмотренных выше двух режимов будет значительное изменение угловой скорости ротора, практически пропорциональной частоте статора.

Во всех случаях, когда имеет место изменение угловой скорости ротора двигателя, происходит изменение полезной мощности на валу и производительности механизма. Полезная мощность на валу изменяется пропорционально произведению момента сопротивления на угловую скорость. Поэтому для рассмотрения режима работы двигателей при любых значениях нагрузки на валу, напряжения и частоты питающей сети необходимо знать характеристики моментов сопротивления механизмов

Читать еще:  Чем промыть систему смазки двигателя в домашних условиях

Судовые электрические машины СЭМ1-С-Р. Цена 879 400 руб.

1. Трансформаторы и автотрансформаторы.
1.1. Однофазный трансформатор.
1.1.1. Определение коэффициента трансформации однофазного трансформатора.
1.1.2. Снятие характеристик холостого хода I0=f(U), Р0=f(U), cosφ0= f(U) однофазного трансформатора.
1.1.3. Снятие характеристик короткого замыкания IК=f(U), РК=f(U), cosφК= f(U) однофазного трансформатора.
1.1.4. Снятие внешней характеристики U=f(I) однофазного трансформатора при активной нагрузке.
1.1.5. Определение рабочих характеристик I1=f(P2), P1=f(P2), η=f(P2), cosφ=f(P2) однофазного трансформатора при активной нагрузке.
1.1.6. Определение уравнительного тока, вызванного неравенством коэффициентов трансформации параллельно включенных однофазных трансформаторов.
1.1.7. Определение небаланса токов параллельно включенных однофазных трансформаторов, вызванного неравенством их напряжений короткого замыкания.
1.2. Однофазный автотрансформатор.
1.2.1. Определение коэффициента трансформации однофазного автотрансформатора.
1.2.2. Снятие внешней характеристики U=f(I) однофазного автотрансформатора при активной нагрузке.
1.3. Трехфазный трансформатор.
1.3.1. Снятие характеристик холостого хода I0=f(U), Р0=f(U), cosφ0= f(U) трехфазного трансформатора.
1.3.2. Снятие характеристик короткого замыкания IК=f(U), РК=f(U), cosφК= f(U) трехфазного трансформатора.
1.3.3. Проверка группы соединений обмоток трехфазного трансформатора.
1.3.4. Подтверждение недопустимости параллельной работы трехфазных трансформаторов с различными группами соединения обмоток.
2. Машины постоянного тока.
2.1. Генераторы постоянного тока.
2.1.1. Снятие характеристики холостого хода E0=f(If) генератора постоянного тока с независимым возбуждением.
2.1.2. Снятие характеристики короткого замыкания IК=f(If) генератора постоянного тока с независимым возбуждением.
2.1.3. Снятие внешней U=f(I), регулировочной If= f(I) и нагрузочной U=f(If) характеристик генератора постоянного тока с независимым возбуждением.
2.1.4. Определение влияния сопротивления цепи возбуждения генератора постоянного тока с параллельным возбуждением на возможность его самовозбуждения.
2.1.5. Определение влияния частоты вращения генератора постоянного тока с параллельным возбуждением на возможность его самовозбуждения.
2.1.6. Снятие внешней U=f(I) характеристики генератора постоянного тока с параллельным возбуждением.
2.1.7. Снятие внешней U=f(I), регулировочной If= f(I) и нагрузочной U=f(If) характеристик генератора постоянного тока со смешанным возбуждением.
2.2. Параллельная работа генераторов постоянного тока.
2.2.1. Параллельная работа генераторов постоянного тока с параллельным возбуждением.
2.2.2. Параллельная работа генераторов постоянного тока со смешанным возбуждением.
2.3. Двигатели постоянного тока.
2.3.1. Снятие электромеханической (скоростной) характеристики n=f(I) двигателя постоянного тока с независимым / параллельным / последовательным / смешанным возбуждением.
2.3.2. Снятие механической характеристики n=f(M) двигателя постоянного тока с независимым / параллельным / последовательным / смешанным возбуждением.
2.3.3. Определение рабочих характеристик n=f(P2), P1=f(P2), М=f(P2), η=f(P2) двигателя постоянного тока с независимым / параллельным / последовательным / смешанным возбуждением.
2.3.4. Регулирование частоты вращения двигателя постоянного тока с независимым / параллельным / последовательным / смешанным возбуждением изменением напряжения якоря.
2.3.5. Регулирование частоты вращения двигателя постоянного тока с независимым / параллельным / последовательным / смешанным возбуждением изменением сопротивления реостата в цепи якоря.
2.3.6. Регулирование частоты вращения двигателя постоянного тока с независимым / параллельным / смешанным возбуждением изменением тока возбуждения.
2.3.7. Регулирование частоты вращения двигателя постоянного тока с последовательным возбуждением шунтированием обмотки возбуждения.
3. Асинхронные электрические машины.
3.1. Трехфазный асинхронный генератор с короткозамкнутым ротором.
3.1.1. Снятие характеристики холостого хода U=f(С) трехфазного асинхронного генератора с короткозамкнутым ротором при его автономной работе.
3.1.2. Снятие внешней U=f(I) характеристики трехфазного асинхронного генератора с короткозамкнутым ротором при его автономной работе.
3.1.3. Снятие и определение нагрузочных характеристик U =f(P2), I=f(P2), P1=f(P2), f=f(P2), s=f(P2), η=f(P2) трехфазного асинхронного генератора с короткозамкнутым ротором при его автономной работе.
3.1.4. Снятие характеристик мощности Р=f(n), Q=f(n) трехфазного асинхронного генератора с короткозамкнутым ротором при f=const, U=const.
3.2. Трехфазный асинхронный генератор с фазным ротором.
3.2.1. Снятие регулировочной rf= f(n) характеристики трехфазного асинхронного генератора с фазным ротором при f=const, U=const, Р=const.
3.3. Трехфазный асинхронный двигатель с короткозамкнутым ротором.
3.3.1. Снятие характеристик холостого хода I0=f(U), Р0=f(U), cosφ0=f(U) трехфазного асинхронного двигателя с короткозамкнутым ротором.
3.3.2. Снятие характеристик короткого замыкания IК=f(U), РК=f(U), cosφК=f(U) трехфазного асинхронного двигателя с короткозамкнутым ротором.
3.3.3. Снятие электромеханической (скоростной) характеристики n=f(I) трехфазного асинхронного двигателя с короткозамкнутым ротором.
3.3.4. Снятие механической характеристики n=f(M) трехфазного асинхронного двигателя с короткозамкнутым ротором.
3.3.5. Определение рабочих характеристик I=f(P2), P1=f(P2), s=f(P2), η=f(P2), cosφ=f(P2), M=f(P2) трехфазного асинхронного двигателя с короткозамкнутым ротором.
3.3.6. Регулирование частоты вращения трехфазного асинхронного двигателя с короткозамкнутым ротором изменением напряжения статора.
3.3.7. Регулирование частоты вращения трехфазного асинхронного двигателя с короткозамкнутым ротором согласованным изменением частоты и напряжения статора.
3.4. Трехфазный асинхронный двигатель с фазным ротором.
3.4.1. Снятие электромеханической (скоростной) характеристики n=f(I) трехфазного асинхронного двигателя с фазным ротором.
3.4.2. Снятие механической характеристики n=f(M) трехфазного асинхронного двигателя с фазным ротором.
3.4.3. Определение рабочих характеристик I=f(P2), P1=f(P2), s=f(P2), η=f(P2), cosφ=f(P2), M=f(P2) трехфазного асинхронного двигателя с фазным ротором.
3.4.4. Регулирование частоты вращения трехфазного асинхронного двигателя с фазным ротором изменением активного сопротивления цепи ротора.
4. Синхронные электрические машины.
4.1. Синхронный генератор.
4.1.1. Снятие характеристики холостого хода E0=f(If) синхронного генератора с независимым возбуждением.
4.1.2. Снятие характеристики короткого замыкания IК=f(If) синхронного генератора с независимым возбуждением.
4.1.3. Снятие внешней U=f(I), регулировочной If= f(I) и нагрузочной U=f(If) характеристик синхронного генератора с независимым возбуждением.
4.1.4. Снятие внешней U=f(I) характеристики синхронного генератора с самовозбуждением.
4.2. Параллельная работа синхронного генератора с сетью большой мощности.
4.2.1. Включение синхронного генератора на параллельную работу с электрической сетью большой мощности по способу точной синхронизации.
4.2.2. Включение синхронного генератора на параллельную работу с электрической сетью большой мощности по способу грубой синхронизации.
4.2.3. Включение синхронного генератора на параллельную работу с электрической сетью большой мощности по способу самосинхронизации.
4.2.4. Регулирование активной мощности и снятие угловой характеристики P=f(δ) синхронного генератора при параллельной работе с электрической сетью большой мощности.
4.2.5. Регулирование реактивной мощности и снятие U-образной характеристики I=f(If) синхронного генератора при параллельной работе с электрической сетью большой мощности.
4.2.6. Перевод синхронной машины, подключенной к электрической сети большой мощности, из генераторного в двигательный режим и в режим синхронного компенсатора.
4.3. Параллельная работа двух синхронных генераторов.
4.3.1. Включение на параллельную работу двух синхронных генераторов.
4.3.2. Регулирование частоты параллельно работающих синхронных генераторов.
4.3.3. Распределение активной нагрузки между параллельно работающими синхронными генераторами.
4.3.4. Распределение реактивной нагрузки между параллельно работающими синхронными генераторами.
4.4. Синхронный двигатель.
4.4.1. Асинхронный пуск трехфазного синхронного двигателя.
4.4.2. Снятие U-образной характеристики I=f(If) трехфазного синхронного двигателя.
4.4.3. Определение рабочих характеристик I=f(P2), P1=f(P2, η=f(P2), cosφ=f(P2), M=f(P2) трехфазного синхронного двигателя.
4.4.4. Снятие угловых характеристик P=f(δ), Q=f(δ), U=f(δ) трехфазного синхронного двигателя.

Читать еще:  Хендай гетц 2008 какое масло в двигатель

    Преобразователь частоты – 1 шт.

Определение тока и потерь холостого хода асинхронных двигателей

При проведении опыта короткого замыкания измеряют ток и потери короткого замыкания электродвигателей, проверяют состояние соединений обмоток, а также качество заливки короткозамкнутых роторов асинхронных двигателей. Результаты опыта позволяют определить начальный пусковой ток и начальный вращающий момент электродвигателя, которые являются важными эксплуатационными параметрами.
Опыт короткого замыкания производят при заторможенном роторе. В электродвигателях с фазными роторами обмотку ротора замыкают накоротко на кольцах. При заторможенном роторе к статору подводят практически симметричное напряжение номинальной частоты.
Вращающий момент для электродвигателей мощностью до 100 кВт измеряют динамометром, весами, тормозом или специальными приборами. Так как этот момент может несколько изменяться в зависимости от положения ротора по отношению к статору, то измерения производят несколько раз, сдвигая ротор на одно зубцовое деление, и в качестве результата принимают наименьший из замеренных моментов. Для двигателей мощностью выше 100 кВт вращающий момент обычно определяют расчетным путем по результатам измерения потерь короткого замыкания.
Необходимо учитывать, что при проведении опыта электродвигатель является трансформатором, вторичная обмотка которого (обмотка ротора) замкнута накоротко. Ток, проходящий по обмоткам, может в несколько раз превысить номинальный, а так как двигатель при неподвижном роторе не вентилируется, то его обмотка очень быстро нагревается. Поэтому необходимые отсчеты по приборам и сам опыт надо производить с максимально возможной быстротой. Следует обратить серьезное внимание на надежность устройств, служащих для затормаживания ротора, так как при проведении опыта они испытывают значительные усилия. Направление вращения ротора определяют заранее и, сообразуясь с ним, устанавливают затормаживающие устройства. При ошибке эти устройства могут сорваться и нанести повреждения персоналу.
Опыт короткого замыкания обычно производят сразу после опыта холостого хода. Характеристика короткого замыкания представляет собой зависимость линейного тока короткого замыкания /„ и потерь короткого замыкания Рк от приложенного к статору напряжения Ик.
Для проведения опыта собирается схема, аналогичная схеме при опыте холостого хода (рис. 1). При проведении опыта рекомендуется двигатель включать на напряжение, составляющее 15—20% номинального, затем быстро поднимать его до требуемого значения. При типовом испытании следует произвести пять — семь отсчетов при разных значениях подводимого напряжения. Первый отсчет берут при наибольшем напряжении. Отсчеты по приборам при каждом значении подведенного напряжения производят за время не более 10 с во избежание чрезмерного нагрева обмотки током короткого замыкания. После каждого отсчета двигатель отключают.
При типовом испытании двигателя мощностью до 100 кВт опыт проводят, начиная с напряжения, отличающегося от номинального не более чем на ±10%. Типовое испытание короткозамкнутых двигателей мощностью свыше 100 кВт допускается производить при напряжениях, меньших номинального, но при таких, чтобы максимальное значение тока короткого замыкания было не ниже 2,5—4-кратного номинальному. При испытании короткозамкнутых двигателей мощностью свыше 1000 кВт, а также при испытании двигателей с фазным ротором допускается доводить ток только до 2-кратного номинальному. Во всех случаях требуется один из отсчетов произвести при напряжении, указанном ниже.

Напряжение короткого замыкания, В .

ГОСТ 7217-66 рекомендует при приемо-сдаточных испытаниях ток и потери короткого замыкания определять только при одном напряжении согласно приведенным выше данным с последующим пропорциональным пересчетом тока короткого замыкания на номинальное напряжение двигателя. Потери в этом случае пересчитывают пропорционально квадрату тока. По данным замеров строится характеристика короткого замыкания (рис. 4).
Так же как и при опыте холостого хода, измерение подводимой мощности производится по схеме двух ваттметров. Однако корректировка подводимой мощности на потерю в приборах не производится, так как эти потери обычно лежат ниже уровня погрешности измерения.
Коэффициент мощности при опыте короткого замыкания составляет:
Контроль правильности определения производят по кривой, приведенной на рис. 1. Для определения вращающего момента Мк, Н-м*, при коротком замыкании

Рис. 4. Пример построения
характеристики короткого
замыкания.

двигателей мощностью выше 100 кВт следует пользоваться формулой
где Рцм2 — потери в обмотке ротора при опыте короткого замыкания, кВт; пс — частота вращения (синхронная), об /мин.

Потери в обмотке ротора Ркм2, кВт, составляют:

где Рhmi — потери в обмотке статора при опыте короткого замыкания, кВт, равные: Pkmi=3/V?/ 1000 — при соединении фаз в звезду; PKMi=IR/1000 — при соединении фаз в треугольник, где R — сопротивление при постоянном токе одной фазы, Ом; Рс — потери в стали,
Значения ki для некоторых двигателей приведены в табл. 1.
Для асинхронных двигателей большей мощности, а также специального исполнения значения kf указаны в соответствующих стандартах и технических условиях; здесь эти данные не приводятся.
Таблица 1

Величина потерь короткого замыкания (приведенная к номинальному напряжению) должна удовлетворять зависимости

где km — установленная в стандартах или технических условиях минимальная кратность начального пускового вращающего момента; Рном — номинальная мощность электродвигателя, кВт; Rp — расчетное сопротивление фазы обмотки статора, т. е. приведенное к температуре 75°С (если двигатель по нагревостойкости изоляции относится к классам А, Е, В) или 115°С (для классов F и Н), Ом; Рс — потери в стали электродвигателя при номинальном напряжении, кВт (определяются при опыте холостого хода); 0,85 — коэффициент, учитывающий допуск 15% в сторону снижения, установленный ГОСТ 183-74 на значение кратности начального пускового вращающего момента; k — коэффициент, равный
0,003 при соединении обмотки статора в звезду или 0,001 при соединении в треугольник.
Таблица 2

Таблица 3

Значения kM для двигателей серий А и АО определяют по табл. 2, для двигателей серий А2 и А02 — по табл. 3, для двигателей мощностью 110—1000 кВт kM равен 0,9 для двух- и четырехполюсных и 1,0 для шести-, восьми-, десяти- и двенадцатиполюсных. Для остальных двигателей значения kM указаны в соответствующих стандартах и технических условиях и здесь не приводятся.
Во время проведения опыта короткого замыкания на пониженном напряжении представляется удобная возможность проверить исправность обмотки короткозамкнутого ротора. Это особенно важно для роторов с литыми алюминиевыми обмотками, в которых часто встречаются пороки литья — пузыри, трещины, обрывы стержней, которые трудно обнаружить при наружном осмотре.
Проверка заключается в том, что при включении обмотки статора на трехфазное напряжение, пониженное настолько, что ротор еще не вращается, а ток настолько мал, что не вызывает заметного перегрева обмоток, ротор медленно проворачивают вручную и следят за показанием трех амперметров, включенных в фазы статора.
Если обмотка ротора исправна, его проворачивание не вызывает изменения показаний амперметров; при неисправном роторе стрелки амперметров поочередно колеблются, и тем заметнее, чем больше неисправность.

Читать еще:  Что является верхним концевым двигателем водного тока растений

§78. Режимы работы асинхронных двигателей

Режимы работы асинхронных двигателей.

Холостой ход.

Если пренебречь трением и магнитными потерями в стали (идеализированная машина), то ротор асинхронного двигателя при холостом ходе вращался бы с синхронной частотой n=n1 в ту же сторону, что и поле статора; следовательно, скольжение было бы равно нулю. Однако в реальной машине частота вращения ротора n при холостом ходе никогда не может стать равной частоте вращения n1, так как в этом случае магнитное поле перестанет пересекать проводники обмотки ротора и в них не возникнет электрический ток.

Поэтому двигатель в этом режиме не может развить вращающего момента и ротор его под влиянием противодействующего момента сил трения начнет замедляться. Замедление ротора будет происходить до тех пор, пока вращающий момент, возникший при уменьшенной частоте вращения, не станет равным моменту, создаваемому силами трения. Обычно при холостом ходе двигатель работает со скольжением s = 0,2-0,5 %.

При холостом ходе в асинхронном двигателе имеют место те же электромагнитные процессы, что и в трансформаторе (обмотка статора аналогична первичной обмотке трансформатора, а обмотка ротора—вторичной обмотке). По обмотке статора проходит ток холостого хода I, однако его значение в асинхронном двигателе из-за наличия воздушного зазора между ротором и статором значительно больше, чем в трансформаторе (20—40 % номинального тока по сравнению с 3—10 % у трансформатора). Для уменьшения тока I в асинхронных двигателях стремятся выполнить минимально возможные по соображениям конструкции и технологии зазоры.

Например, у двигателя мощностью 5 кВт зазор между статором и ротором обычно равен 0,2—0,3 мм. Ток холостого хода, так же как и в трансформаторе, имеет реактивную и активную составляющие. Реактивная составляющая тока холостого хода (намагничивающий ток) обеспечивает создание в двигателе требуемого магнитного потока, а активная составляющая — передачу в обмотку статора из сети энергии, необходимой для компенсации потерь мощности в машине в этом режиме.

Нагрузочный режим.

Чем больше нагрузочный момент на валу, тем больше скольжение и тем меньше частота вращения ротора. Увеличение скольжения при возрастании момента объясняется следующим образом. При увеличении нагрузки на валу ротора он начинает тормозиться и частота его вращения т уменьшается.

При достижении равенства моментов М = Мвн торможение прекратится и двигатель будет снова вращаться с постоянной частотой вращения, но меньшей, чем до увеличения нагрузки. При уменьшении нагрузочного момента Мвн частота вращения ротора по той же причине будет увеличиваться. Обычно при номинальной нагрузке скольжение для двигателей средней и большой мощности составляет 2—4 %, а для двигателей малой мощности от 5 до 7,5 %.

При работе двигателя под нагрузкой по обмоткам его статора и ротора проходят токи i1 и i2. Частота тока в обмотках статора f1 и ротора f2 определяется частотой пересечения вращающимся магнитным полем проводников соответствующей обмотки. Обмотка статора пересекается магнитным полем с частотой n1, а обмотка вращающегося ротора — с частотой n1 — n. Следовательно,

Передача электрической энергии из статора в ротор происходит так же, как и в трансформаторе. Двигатель потребляет из сети электрическую мощность Pэл = 3U1I1cosφ1 и отдает приводимому им во вращение механизму механическую мощность Рмх (рис. 260).

Рис. 260. Энергетическая диаграмма асинхронного двигателя

В процессе преобразования энергии в машине имеют место потери мощности: электрические в обмотках статора ΔРэл1 и ротора ΔРэл2, магнитные ΔРм от гистерезиса и вихревых токов в ферромагнитных частях машины и механические ΔРмх от трения в подшипниках и вращающихся частей о воздух.

Из статора в ротор вращающимся электромагнитным полем передается электромагнитная мощность Pэм роторе она превращается в механическую мощность ротора Р’мх. Полезная механическая мощность на валу двигателя Pмх меньше мощности Р’мх на значение потерь мощности на трение ?Рмх.

При возрастании механической нагрузки на валу двигателя увеличивается ток I2. В соответствии с этим возрастает и ток I1 в обмотке статора.

Электромагнитный момент М создается в асинхронном двигателе в результате взаимодействия вращающегося магнитного поля с током I2, индуцируемым им в проводниках обмотки статора. Однако в создании его участвует не весь ток I2, а только его активная составляющая I2cosφ2 (здесь φ2 — угол сдвига фаз между током I2 и э. д. с. Е2 в обмотке ротора).

Фт — амплитуда магнитного потока, созданного обмоткой статора;

cм — постоянная, определяемая конструктивными параметрами данной машины и не зависящая от режима ее работы.

Поясним физический смысл формулы (84). На рис. 261 изображен ротор двухполюсного асинхронного двигателя в развернутом виде, на котором кружками показаны поперечные сечения проводников.

Крестики и точки внутри проводников обозначают направление в них тока i2, а под проводниками — направление индуцированных э. д. с. e2, которые пропорциональны индукции В в данной точке воздушного зазора между статором и ротором. Кривая В показывает распределение вдоль окружности ротора индукции, создаваемой вращающимся магнитным полем, кривая i2 — распределение тока в проводниках, а кривая f — распределение электромагнитных сил, возникающих в результате взаимодействия тока (а с вращающимся магнитным полем.

Электромагнитный вращающий момент М, создаваемый в результате совместного действия всех сил f, будет пропорционален среднему значению электромагнитной силы fср. Легко заметить, что к проводникам, лежащим на дуге, равной 180° — φ2, приложены силы f, увлекающие ротор за вращающимся магнитным полем, а на дуге φ2 — тормозящие силы. Поэтому при неизменном токе I2 среднее значение электромагнитной силы fср, а следовательно, и электромагнитный момент М будут тем больше, чем меньше угол φ2. Электромагнитный момент М зависит от скольжения s.

Рис. 261. Распределение индукции В, тока i2 и электромагнитных сил f, действующих на проводники асинхронного двигателя

Так, при увеличении скольжения возрастает э. д. с. Е2 в обмотке ротора и ток I2. Однако одновременно уменьшается cosφ2, так как активное сопротивление обмотки ротора R2 остается неизменным, а реактивное Х2 увеличивается (возрастает частота тока f2 в обмотке ротора).

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector