Характеристики и принцип действия трехфазного асинхронного двигателя
ГЛАВА 3.ИСПОЛНИТЕЛЬНЫЕ МЕХАНИЗМЫ НА БАЗЕ АСИНХРОННОГО ЭЛЕКТРОПРИВОДА
§3.1. Конструкция, принцип работы и характеристики трехфазного асинхронного двигателя
Асинхронной машиной называется машина переменного тока, у которой угловая скорость ротора не равна угловой скорости магнитного поля статора. Угловая скорость ротора зависит от нагрузки; в режиме двигателя нагрузкой является механический момент сопротивления на валу машины.
Классификация основных типов асинхронных двигателей приведена на рис.3.1.
У асинхронных машин большой, средней и малой мощности на статоре практически всегда расположена трехфазная обмотка, т.е. обмотка, состоящая из трех отдельных электрических цепей, сдвинутых в пространстве на 120°, асинхронные микромашины выпускаются в основном с двухфазной обмоткой статора со сдвигом обмоток фаз на 90°.
Конструкция. Магнитопроводы статора и ротора трехфазной машины обычно неявнополюсные (см.рис.1.5,а). Трехфазная обмотка статора обычно выполняется распределенной. На внешнюю панель выводов либо выходят все 6 выводов, либо обмотки фаз соединяются внутри машины по схеме “звезда” или “треугольник” и на панель выходят 3 вывода. Обмотка статора предназначена для создания вращающегося магнитного поля машины. Обмотка ротора типа «беличьей клетки» состоит из неизолированных алюминиевых или медных стержней, расположенных в пазах и замкнутых накоротко с торцов двумя кольцами .
Принцип действия. Принцип работы асинхронных машин связан с понятием вращающегося магнитного поля. Обмотка, создающая вращающееся поле, представляет собой N-фазную систему, т.е. состоит из N обмоток, которые сдвинуты друг относительно друга в пространстве и по которым протекают токи, сдвинутые во времени. Каждая из обмоток фаз создает пульсирующий поток (неподвижный в пространстве и изменяющийся во времени), сдвинутый относительно других в пространстве и во времени. Если все обмотки фаз имеют одинаковое число витков и сдвинуты в пространстве на одинаковый пространственный угол γ, токи имеют одинаковую амплитуду Im и частоту f и сдвинуты во времени на одинаковый угол β, то результирующее магнитное поле будет круговым. Это означает, что поток представляет собой вектор постоянной длины, вращающийся в пространстве с постоянной угловой скоростью.
Условия образования кругового магнитного поля в общем случае можно записать следующим образом:
и в трехфазной машине (N=3) они примут вид
Угловая скорость магнитного поля, называемая синхронной скоростью машины переменного тока, будет равна (рад/с)
где рм — число пар полюсов обмотки. Синхронная частота вращения (об/мин) n1 = 60 f / рм.
Если изменить порядок чередования любых двух обмоток фаз, то вектор магнитного поля будет вращаться в противоположную сторону.
Асинхронная машина, как и электрические машины других типов, является обратимой. Принцип действия асинхронной машины основан на электромагнитном взаимодействии вращающегося магнитного поля статора с токами, наведенными этим полем в роторе. Поскольку наведение ЭДС в роторе возможно только при неравенстве угловых скоростей ротора ◜ и магнитного поля статора ◛, то условие ◜ ≠ ◛ является обязательным для создания электромагнитного момента в любом режиме работы асинхронной машины. В качестве характеристики этого неравенства вводится понятие скольжения:
Пусть магнитное поле статора Ф1 и ротор вращаются в одну сторону и ◜ ◛, то машина переходит в режим генератора; теоретический диапазон режима генератора ◜ = 0 ÷ ∞, s = 0 ÷ ( — ∞ ).
Если ротор вращается в сторону, противоположную магнитному полю статора ,то электромагнитный момент Мэм направлен против направления вращения ротора, и машина работает в режиме торможения противовключением; теоретический диапазон работы в режиме торможения противовключением ◜ = 0 ÷ ( — ∞ ), s = 1 ÷ ( ∞ ).
Линейный асинхронный двигатель в простейшем случае можно получить, если вращающийся двигатель разрезать по диаметру и развернуть на плоскости. При этом магнитное поле получается не вращающимся, а бегущим, и электрическая энергия преобразуется в механическую поступательного движения.
Электромагнитный момент. Электромагнитный момент, возникающий в результате взаимодействия вращающегося магнитного поля статора с токами, наведенными этим полем в роторе, может быть определен из выражения
Mэм = k Фм I2 cos ◒ , (3.4)
где k – конструктивный коэффициент, зависящий от числа фаз, числа полюсов и числа витков в фазе обмотки статора.
Как видно из (3.4), электромагнитный момент прямо пропорционален основному магнитному потоку Фм и активной составляющей тока ротора I2 cos ◒. При этом основной поток определяется напряжением питания и не зависит от нагрузки, а ток ротора I и его фаза относительно ЭДС ◒ зависят от скольжения и соответственно от нагрузки:
В этих выражениях R2 и x2 – активное и индуктивное сопротивления фазы ротора.
Формула момента (3.4) получена для режима двигателя, но она справедлива и для других режимов с учетом знака и диапазона значений скольжения s.
Механические характеристики. Уравнением естественной механической характеристики асинхронного двигателя является выражение (3.4) с заменой скольжения S на угловую скорость ◜ по (3.3) при U1=const. График характеристики изображен на рис. 3.3.
Такой вид характеристики легко поясняется с помощью формул (3.4) — (3.6).При увеличении скольжения ток ротора I2 непрерывно растет, но становится все более индуктивным – уменьшается сos◒, так как увеличивается частота токов в роторе и, соответственно, его индуктивное сопротивление. В результате активная составляющая тока ротора и, соответственно, электромагнитный момент вначале растут, а затем начинают убывать.
Скольжение, при котором момент достигает максимального значения Mmax, называется критическим и обозначается sкр ;на основании (3.3) соответствующая критическая скорость ◜kp=(1-sкр)◛. Для определения sкр необходимо, воспользовавшись выражением (3.4), взять производную dMэм / ds и приравнять ее нулю. Решение получающегося уравнения имеет вид sкр≈R2x2.
В большинстве асинхронных двигателей необходимо обеспечить высокий КПД. Поэтому активное сопротивление обмоток, в частности R2, определяющее уровень электрических потерь в роторе, стремятся получить малым. При этом критическое скольжение лежит в диапазоне 0,1 ÷ 0,25.
Сам максимальный момент пропорционален квадрату напряжения питания, не зависит от активного сопротивления роторной цепи R2 и наступает при тем большем скольжении, чем больше активное сопротивление роторной цепи (рис. 3.3, штрих — пунктирная линия).
Пусковой момент двигателя Mп определяется выражением (3.4) при s=1. Значение Mп пропорционально квадрату напряжения питания и возрастает при увеличении R2 (см. рис. 3.3), достигая максимума при sкр =1 (◜kp=0).
Оценим механическую характеристику по показателям устойчивости, жесткости и линейности. Если воспользоваться формальным признаком устойчивости d◜dMэм Пуск. Условием пуска двигателя является неравенство Мп>Мст ; если это условие выполняется, то при включении двигателя в сеть ротор приходит в движение и разгоняется до установившегося режима. При пуске ( ◜ = 0, s =1) ток в роторе достигает наибольшего значения (см. (3.5)). Соответственно велики пусковые токи и в обмотке статора.
У асинхронных двигателей малой мощности и специальных двигателей с повышенным критическим скольжением обычно кратность пускового тока Кiп= 6 или требуется более сильно ограничить пусковой ток, то приходится применять специальные способы пуска. У двигателей с короткозамкнутым ротором это в основном способы пуска при пониженном напряжении питания. Недостатком способов пуска при пониженном напряжении является то, что пропорционально квадрату фазного напряжения уменьшается пусковой момент.
Реверсирование двигателя. Изменение направления вращения ротора осуществляется изменением направления вращения поля статора. Для этого достаточно поменять местами выводы двух любых фаз.
Торможение двигателя. Для быстрой остановки двигателя могут применяться различные способы электрического торможения: рекуперативное, торможение противовключением и динамическое торможение.
Рекуперативное торможение происходит при работе асинхронной машины в режиме генератора параллельно с сетью, т.е. при ◜ > ◛. На практике этот режим встречается редко,в основном при переходе с высших угловых скоростей на низшие, например, при изменении числа пар полюсов или частоты напряжения питания.
Торможение противовключением происходит в том случае, когда магнитное поле статора вращается в одном направлении, а ротор в противоположном. При этом угловая скорость ротора и создаваемый двигателем момент имеют противоположные знаки.
Динамическое торможение осуществляется отключением обмотки статора от сети переменного тока и подключением к сети постоянного тока. Возникает неподвижное поле статора, которое наводит ЭДС и токи во вращающемся роторе. В результате взаимодействия этих токов с полем статора создается тормозной момент.
Регулирование скорости. Трехфазные асинхронные двигатели используют в основном в приводах, не требующих широкого регулирования угловой скорости ротора. Однако в последнее время расширяется применение этих дешевых и надежных двигателей и в регулируемом электроприводе, в том числе в станках с числовым программным управлением. Основные способы регулирования угловой скорости ротора основаны на изменении скорости поля за счет изменения частоты напряжения питания или числа полюсов, т.к.
◜=(1 — s)◛=(1-s)(2πf1/pм). (3.7)
Изменение числа пар полюсов рм позволяет дискретно регулировать ◜. Для реализации этого способа требуется либо укладывать на статоре несколько обмоток с различным рм, либо выполнять одну обмотку из секций, выведенных на коммутатор. Основным недостатком способа регулирования является ступенчатый характер изменения угловой скорости, число ступеней скорости не превышает 3÷ 4.
Регулирование скорости в ограниченном диапазоне возможно также за счет изменения амплитуды напряжения питания, а у двигателей с контактными кольцами – изменения добавочного сопротивления в цепи ротора.
Устройство и принцип работы трехфазных асинхронных двигателей
Трехфазный асинхронный двигатель состоит из неподвижного статора и ротора. Три обмотки размещены в пазах на внутренней стороне сердечника статора асинхронного двигателя. Обмотка же ротора асинхронного двигателя не имеет электрического соединения с сетью и с обмоткой статора. Начало и концы фаз обмоток статора присоединяют к зажимам в коробке выводов по схеме звезда или треугольник.
Асинхронные двигатели в основном различаются устройством ротора, который бывает двух типов: фазный или короткозамкнутый. Обмотка короткозамкнутого ротора асинхронного двигателя выполняется на цилиндре из медных стержней и называется «беличьей клеткой». Торцевые концы стержней замыкают металлическими кольцами. Пакет ротора набирают из электротехнической стали. В двигателях меньшей мощности стержни заливают алюминием. Фазный ротор и статор имеют трехфазную обмотку. Фазы обмотки соединяют звездой или треугольником и ее свободные концы выводят на изолированные контактные кольца.
Получение вращающегося магнитного поля
Обмотка статора асинхронного двигателя в виде трех катушек уложена в пазы расположенные под углом в 120 градусов. Начало и конца катушек обозначаются соответственно буквами A, B, C и X,Y,Z. При подаче на катушки трехфазного напряжения в них установятся токи Ia, Ib, Ic и катушки создадут собственное переменное магнитное поле. Ток в любой катушке положительный, когда он направлен от начала к ее концу и отрицательный при обратном направлении. Векторы намагничивающей силы совпадают с осями катушек, а их величина определяется значениями токов, направление результирующего вектора совпадает с осью катушки. Вектор результирующей намагничивающей силы поворачивается на 120 градусов сохраняя величину совпадает с осью соответствующей катушки. Таким образом за период, результирующее магнитное поле статора совершает оборот с неизменной скоростью. Работа трехфазного асинхронного двигателя основана на взаимодействии вращающегося магнитного поля с токами наводимыми в проводниках ротора.
Принцип работы трехфазного асинхронного двигателя
Совокупность моментов созданных отдельными проводниками образует результирующий вращающий момент двигателя, возникает электромагнитная пара сил, которая стремится повернуть ротор в направлении движения электромагнитного поля статора. Ротор приходит во вращение приобретает определенную скорость, магнитное поле и ротор вращаются с разными скоростями или асинхронно. Применительно к асинхронным двигателям, скорость вращения ротора всегда меньше скорости вращения магнитного поля статора.
Пуск асинхронных двигателей
В асинхронных двигателях с большим моментом инерции необходимо увеличение вращающего момента с одновременным ограничением пусковых токов — для этих целей применяют двигатели с фазным ротором. Для увеличения начального пускового момента в схему ротора включают трехфазный реостат. В начале пуска он введен полностью, пусковой ток при этом уменьшается. При работе реостат полностью выведен. Для пуска асинхронных двигателей с короткозамкнутым ротором применяют три схемы: с реактивной катушкой, с автотрансформатором и с переключением со звезды на треугольник. Рубильник последовательно соединяет реактивную катушку и статор двигателя. Когда скорость ротора приблизится к номинальной, замыкается рубильник, он закорачивает катушка и статор переключаются на полное напряжение сети. При автотрансформаторном пуске по мере разгона двигателя, автотрансформатор переводится в рабочее положение, в котором на статор подается полное напряжение сети. Пуск асинхронного двигателя с предварительным включением обмотки статора звездой и последующим переключением ее на треугольник дает трехкратное уменьшение тока.
Изменение частоты вращения ротора трехфазного асинхронного двигателя
Параллельные обмотки двух фаз образуют одну пару полюсов сдвинутые в пространстве на 120 градусов. Последовательное соединение обмоток образует две пары полюсов, что дает возможность уменьшить скорость вращения в два раза. Для регулирования скорости вращения ротора изменением частоты тока используют отдельный источник тока или преобразователь энергии с регулируемой частотой выполненный на тиристорах.
Способы торможения двигателей
При торможении противовключением меняются два провода соединяющих трехфазную сеть с обмотками статора, изменяя при этом направление движения магнитного поля машины. При этом наступает режим электромагнитного тормоза. Для динамического торможения обмотка статора отключается от трехфазной сети и включается в сеть постоянного тока. Неподвижное поле статора заставляет ротор быстро останавливаться. Асинхронные двигатели нашли широкое применение в промышленности. В строительных механизмах, на металлообрабатывающих станках, в кузнечно-прессовом оборудовании, в силовых приводах прокатных станов, в радиолокационных станциях и многих других отраслях.
Двигатель асинхронный трехфазный: устройство и принцип действия.
Трехфазный асинхронный двигатель является наиболее распространённым типом моторов. В таком электродвигателе на статоре устанавливается трехфазная обмотка, что обуславливает его название.
КОНСТРУКЦИЯ ТРЕХФАЗНОГО асинхронного ДВИГАТЕЛЯ
Основная задача двигателя — это превращение электрической энергии в механическую. Конструкция его состоит из двух основных элементов таких как ротор (подвижная часть) и статор (неподвижная часть).
Между ними находиться воздушный зазор. Оба этих элемента имеют в себе сердечники, где размещается специальные витки обмотки. В роторе они располагаются на валу, а в статоре в специальных пазах на корпусе.
Пазы, на которых крепиться обмотка имеют угловое расстояние между собой в 120 градусов. Наиболее распространённым является система с короткозамкнутым ротором или как ее называют «беличье колесо». В этом случае обмотка крепиться на каркас цилиндрической формы, а стержни соединяются с сердечником ротора и накоротко замыкаются с торцов.
Помимо короткозамкнутого также используются и двигатели с фазным ротором. В этом случае фазы обмотки присоединяется к специальным контактным кольцам, а их концы изолируются друг от друга и от вала. При всем этом статоры в обоих представленных видах могут не отличаться конструкционно.
Существует несколько схем соединения трехфазных обмоток между собой. Основными способами являются т.н. «звезда» и «треугольник». Иногда устанавливаются и комбинированные варианты. Подбор схемы зависит от напряжения питания в сети. В первом случае концы фаз обмоток соединены в одной точке. Во втором — конец каждой фазы поочередно соединяется с началом следующей.
ПРИНЦИП ДЕЙСТВИЯ
Работа асинхронного двигателя основывается на вращении магнитных полей. С помощью тока в обмотке статора создается движущееся магнитное поле, которое воздействует на контур ротора и индуцирует в нем электродвижущую силу. Если этот показатель выше силы трения, то вал приводиться в движение.
Ротор увеличивает частоту вращения пытаясь догнать скорость вращения магнитных полей обмотки статора. Однако, когда этот параметр сравниваеться то электродвижущая достигает нулевого значения и магнитное воздействие пропадает.
Поэтому частота вращение вала никогда не совпадает (не синхронна) с частотой движущихся магнитных полей. Из-за этого двигатель называют асинхронным.
РЕЖИМЫ РАБОТЫ
Трехфазный электродвигатель асинхронного типа имеет несколько возможных режимов работы:
- Пуск.
- Двигательный режим.
- Холостой ход.
- Генераторный режим.
- Электромагнитное торможение.
Пуск является начальным этапом работы любого двигателя. В этом режиме на обмотку пускается ток и создаются вращающиеся магнитные поля. В момент, когда сила трения меньше электродвижущей — ротор начинает вращение.
Двигательный режим выполняет основную задачу электродвигателя, то есть превращает электродвижущую силу в механическое вращение вала.
Холостой ход происходит, когда на валу отсутствует нагрузка, то есть он не подсоединен к другим устройствам.
Генераторный режим включается, когда обороты вала принудительно, например, с помощью другого двигателя, превышают скорость вращения электромагнитного поля. В этом случае электродвижущая сила имеет обратный вектор и двигатель превращается в источник активной энергии.
Электромагнитное торможение происходит, когда искусственно изменяют направление вращения электромагнитного поля и ротора на противоположные. Происходит довольно быстрое торможение. Применяется только в экстренных случаях, так как выделяется огромное количество тепла.
ПРЕИМУЩЕСТВА ТРЕХФАЗНОГО АСИНХРОННОГО ДВиГАТЕЛЯ
Трёхфазный двигатель также может работать в однофазном режиме, когда это потребуется. Однако номинальная мощность при этом понижается приблизительно вдвое.
В случае пропадания одной из фаз двигатель продолжит работу и даже будет возможен запуск, но с пониженной мощностью. Относительная дешевизна, хороший КПД и надежность поспособствовали тому, что такие моторы заслужили наибольшую популярность во всем мире.
На нашем сайте вы сможете найти электродвигали для любых ситуаций. В каталогах представлены моторы таких мировых лидеров как Siemens, ABB, Lenze, а также VEM motors.
На страницах нашего блога также можно также ознакомиться с другими типами асинхронных моторов >>>ОДНОФАЗНЫЕ АСИНХРОННЫЕ ДВИГАТЕЛИ >> ВИДЫ ЭЛЕКТРОДВИГАТЕЛЕЙ
Характеристики и принцип действия трехфазного асинхронного двигателя
Асинхронный (индукционный) двигатель – механизм, превращающий силу переменного тока в механическую. Под асинхронным подразумевают, что скорость движения магнитной силы статора выше аналогичной величины оборотов ротора.
Для того, чтобы получше представлять, что такое асинхронный двигатель и принцип действия трехфазного асинхронного двигателя, где он используется и как работает, необходимо разобраться в его составных частях и деталях, исследовать технические характеристики. Кроме того, не лишним будет понять, как происходит преобразование силы во время пуска и где используется асинхронный двигатель на практике.
В сегодняшней статье мы попробуем ответить на самые интересные вопросы, связанные с асинхронными двигателями, разобраться в том, что такое устройство однофазного асинхронного двигателя, рассмотрим принципы работы, а также плюсы и минусы данного типа устройств.
Немного истории
Первый подобный механизм электродвигателей появился еще в 1888 году и представил его американский инженер Никола Тесла. Однако, его опытный образец устройства и был не самым удачным, так как был двух фазным или много фазным и рабочие характеристики асинхронного двигателя не удовлетворяли потребителей. Поэтому широкого распространения не получил.
А вот благодаря российскому ученому Михаилу Доливо-Доброволь скому в изобретение удалось вдохнуть новую жизнь. Именно ему принадлежит первенство в деле создания первого в мире трехфазного асинхронного мотора. Такое усовершенствование конструкции стало революционным, так как принцип работы трехфазного асинхронного двигателя позволял использовать для работы всего три провода, а не четыре. Так что для плавного пуска устройства в массовое производство препятствий больше не оставалось.
Сегодня, благодаря своей простоте эти машины получили широкое распространение, а механическая характеристика асинхронного двигателя устраивает всех водителей.
Простота в использовании, принцип действия асинхронного двигателя, легкий пуск, надежность и дешевизна, помогли этим моторам распространиться по всему миру и буквально совершить технический переворот в промышленности.
Принцип работы трехфазного двигателя основан на питании от трех фаз переменного тока в стандартной сети. Для работы ему требуется именно такое электричество и поэтому он назван трех фазным.
Устройство трехфазного двигателя
Любой мотор асинхронного типа, независимо от его мощности и размеров, состоит из одних и тех же частей, механическая характеристика асинхронного двигателя также одна и та же. Главными среди составляющих являются:
- статор (неподвижная часть машины)
- ротор (вращающаяся часть)
Помимо этого, в современных трех фазных двигателях можно найти следующие детали:
- вал
- подшипники
- обмотку
- заземление
- корпус (в который монтируются все детали)
Как уже указывалось выше, базовые элементы двигателя — это статор (неподвижная часть) и ротор (подвижная деталь).
Статор выполнен в виде цилиндра, составлен данный элемент из множества металлических, форменных листов. Внутренняя часть создана таким образом, чтобы расположить обмотку. Центры обмоток расположены под углом в 120 градусов, а подключение происходит, исходя из доступного напряжения и двух возможных вариантов: на три или пять контактов.
Принципы, использование которых лежит в работе такого приспособления, как устройство асинхронного двигателя:
- Правило левой руки буравчика.
- Закон электромагнитной индукции Фарадея.
Исходя из типа обмотки, ротор может быть короткозамкнутым или фазным.
Короткозамкнутым называют ротор, состоящий из множества стальных частей. Работа асинхронного двигателя с короткозамкнутым ротором заключается в следующем: в специальные пазы заливают алюминий, формирующий сердцевины, крепящиеся с обеих сторон стопорными кольцами, такая конструкция получила название «беличья клетка». Называется так, потому что замкнута накоротко и в ней не может использоваться сопротивление.
Фазным называют ротор, который обмотан по принципу, аналогичному статору, подходящему для трехфазной сети. Края проводки сердцевины замыкают в звезду, а оставшиеся контакты подводят к контактным частям.
Согласно принципу обратимости, любым фазным асинхронным двигателям свойственна возможность работать в качестве двигателя, генератора или электромагнитного тормоза. Электромеханическая характеристика асинхронного двигателя:
- Двигатель.
- Самый частый вид использования механизма.
- Генератор.
- Действие машины можно обратить, то есть механическую энергию, приложенную к сердцевине можно превратить в электрический ток. Для этого центральной части нужно вращаться быстрей магнитного поля. Потребляя механическую энергию генератор начнет создавать тормозной момент, возвращая электрическую энергию.
- Электромагнитный тормоз.
Изменение порядка чередования фаз приводит к тому, что магнитное поле и сердцевина вращаются в различные стороны, при этом потребляется как механическая энергия, так и напряжение сети, создавая тормозной момент. Собранная энергия приводит к нагреву машины.
Принцип работы трехфазного двигателя
Принцип работы асинхронного двигателя в следующем: подавая напряжение на статор, в его проводке возникает магнитное воздействие, которая благодаря углу размещения осей обмоток, суммируется и создает итоговый, вращающий магнитный поток.
Вращаясь, он создает в проводниках электродвижущую силу. Обмотка сердцевины, создана таким образом, что при включении в сеть, появляется сила, налаживающаяся на действие статора и создающая движение.
Устройство и принцип действия асинхронного двигателя зависит и от сердцевины. Движение сердцевины происходит, когда магнитная сила статора и пусковой момент преодолевают тормозную мощность ротора и внутренняя часть начинает движение, в этот момент проявляется такой показатель, как скольжение.
Скольжение очень важный параметр. В начале движения ротора оно равно 1, но вместе с ростом частоты движения, наблюдается выравнивание, и как следствие снижаются электродвижущие силы и ток в обмотках, это приводит к снижению вращающего момента.
Существует крайний предел скольжения, превышать это значение не стоит, ведь механизм может «опрокинуться», что приведет к нарушению его нормальной работы. Минимальное скольжение происходит на холостых оборотах мотора, при увеличении момента значение будет расти, до наступления критической отметки.
Во время пуска вектор результирующего магнитного поля неподвижной части плавно вращается с определенной частотой. Через сечение ротора проходит магнитный поток. Электроэнергия, подходящая к двигателю в момент пуска, уходит на перемагничивание статора и ротора.
Стоит заметить, что для электромоторов, в том числе асинхронных свойственно то, что во время пуска в короткий промежуток времени достигается до 150% крутящего момента. Пусковой ток превышает номинальный в 7 раз и из-за этого, в момент пуска падает напряжение во всей электрической сети. Если падение напряжения слишком большое, то даже сам двигатель может не запуститься – таков принцип его действия. Поэтому на практике используют устройство плавного пуска.
Устройство плавного пуска
Устройства плавного пуска асинхронных двигателей имеет свою специфику. Оно используется для плавного пуска или остановки электромагнитных двигателей. Может быть механическим, электромеханичес ким или полностью электронным.
Пусковая характеристика асинхронного двигателя предназначена:
- для плавного разгона асинхронного двигателя
- для плавной остановки
- для снижения тока во время пуска
- для синхронизации нагрузки и крутящего момента
Принцип работы и действия устройства плавного пуска основаны на широкой вариативности переменных. Как следствие, появляются большие возможности для управления режимами работы.
Хорошие и плохие свойства асинхронных моторов
Асинхронный двигатель принцип работы и устройство имеет достоинства и недостатки. Трансформаторы, внутри которых находится вращающийся ротор, используемый для работы двигателя, получили обширное применение так как принцип действия у них простой и понятный, а само устройство работает бесперебойно. Однако и короткозамкнутым и фазным устройствам свойственны определенные недостатки. Причем именно принцип их действия лежит в основе данных минусов.
- Короткозамкнутым и фазным устройствам свойственна простота конструкции.
- Так как принцип действия очень прост, устройства получаются дешевыми.
- Простота пуска и высокие эксплуатационные характеристики.
- Простота пуска обеспечивает легкое управление.
- Принцип действия и работы таков, что асинхронные моторы могут работать в тяжелых условиях.
- Принцип работы основан на том, что при изменении скорости, теряется мощность.
- Когда увеличивается нагрузка, практически сразу начинает снижаться крутящий момент.
- В момент плавного пуска, мощность асинхронного мотора достаточно низкая.
Стоит отметить, что в настоящее время, отдается предпочтение устройствам с короткозамкнутым ротором. А вот устройства, в которых ротор фазный используются в редких случаях, как правило, когда достигается большая мощность.