Autoservice-mekona.ru

Автомобильный журнал
7 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Характеристики двигателя постоянного тока в режиме торможения

Характеристики двигателя постоянного тока в режиме торможения

Рис. 7. Схема включения двигателя постоянного тока параллельного возбуждения

Для построения механической характеристики двигателя параллельного возбуждения достаточно иметь две ее точки, так как характеристика имеет вид прямой линии (прямолинейна).

На рис. 8 приведены естественные и искусственные механические характеристики двигателя постоянного тока параллельного возбуждения.

Рис. 8. Механические характеристики двигателя постоянного тока с параллельным возбуждением
1 — естественная; 2 — искусственные при различных потоках возбуждения; 3 — искусственные при различных напряжениях; 4 — искусственные при различных сопротивлениях в цепи якоря

Искусственные механические характеристики, получаемые за счет изменения магнитного потока Ф или подводимого напряжения U (рис. 8, прямые 2 и 3), являются жесткими характеристиками, а получаемые за счет изменения сопротивления якорной цепи R — мягкими характеристиками (рис. 8, прямая 4).

Реверсирование вращения двигателя постоянного тока осуществляется изменением направления тока либо в обмотке якоря, либо в обмотке возбуждения. Переключение обмотки возбуждения практикуется реже, так как вследствие ее индуктивности время торможения возрастает по сравнению с переключением обмотки якоря.

Скоростные и механические характеристики, соответствующие условиям задачи, представлены на рис. 9.

Рис. 9. Естественная и искусственные скоростные (а) и механические (б) характеристики двигателя параллельного -возбуждения (к примеру 2)

В современных электроприводах часто возникает необходимость останавливать производственный механизм или изменять направление его движения. Эти операции можно осуществлять переводом электродвигателя в тормозной режим работы по одной из механических характеристик, отвечающих выбранному способу электрического торможения. Механические характеристики двигателя с параллельным возбуждением для различных режимов работы представлены на рис. 10.

Рис. 10. Механические характеристики двигателя с параллельным возбужденней при различных режимах работы

В этом режиме ток и момент на валу двигателя отрицательны. Рассматриваемый тормйзной режим работы электродвигателя создается автоматически, без каких-либо переключений в нормальной схеме, если ток возбуждения увеличивается или скорость вращения двигателя повышается сверх возможной скорости п0. В этом случае электрическая машина работает как генератор, отдавая электрическую энергию в сеть. Развиваемый машиной тормозной момент уравновешивается движущим моментом, приложенным к валу. Этот способ торможения применяется в крановых и других установках при спуске груза. Генераторное торможение в электроприводах с частыми пусками и остановками является весьма экономичным, поскольку оно сопровождается отдачей электроэнергии в сеть.

Генераторное торможение с отдачей энергии в сеть.

Механические характеристики машины в режиме генераторного торможения с отдачей энергии в сеть являются естественным продолжением характеристик двигательного режима в область квадранта II (см. рис. 10).

Генераторное торможение при замыкании якоря машины на сопротивление (динамическое торможение).

Механические характеристики машины в рассматриваемом режиме проходят через начало координат, располагаясь в квадранте II (см. рис. 10), так как при положительном значении скорости вращения ток и момент отрицательны по знаку. Жесткость характеристик уменьшается с увеличением сопротивления якорной цепи. В режиме динамического торможения машина работает генератором за счет кинетической энергии, накопленной во вращающихся инерционных массах электропривода и производственного механизма.

Схема включения двигателя, позволяющая перевести его в режим динамического торможения, приведена на рис. 11. Для осуществления торможения якорь двигателя необходимо отключить от сети контактором К и замкнуть его на сопротивление Rn контактором КТ. Обмотка возбуждения при этом остается включенной в сет‘ь так же, как и в двигательном режиме. Якорь двигателя, как уже указывалось, будет продолжать вращаться за счет кинетической энергии, запасенной в движущихся частях привода. Возникающая при этом э. д. с. ея вызовет ток в цепи якоря. Направление э. д. с. сохранится то же, что и в двигательном режиме, а ток и момент двигателя изменят свое направление. Двигатель будет развивать тормозной момент, направленный против движения. Под его воздействием произойдет быстрая остановка двигателя и связанных с ним вращающихся частей механизма.

Торможение прогивовключением. Механические характеристики двигателя в рассматриваемом режиме являются продолжением в квадрант IV механических характеристик двигательного режима (см. рис. 10).

Режим противовключения имеет место, когда момент на валу от груза (в подъемных механизмах) оказывается больше предельного момента, который может развивать электродвигатель в двигательном ‘режиме. В этом случае груз под действием своего веса начнет опускаться, что приведет к вращению электродвигателя в сторону’, противоположную той, которая определяется полярностью приложенного напряжения при данном включении обмоток. Направление тока при этом остается неизменным, т. е. таким же, что и в двигательном режиме; момент двигателя также сохраняет свой знак, но по отношению к новому установившемуся движению он будет являться тормозным.

Рис. 11. Схема включения двигателя при динамическом торможении

Величина тока в режиме противовключения больше, чем в двигательном режиме, поэтому и величина момента, развиваемая двигателем при торможении противо-включением, также увеличивается.

Режим противовключения часто используется в электроприводах для быстрого изменения направления их вращения—реверсирования.

Тормозной режим работы двигателя противовключе-нием может быть использован и для быстрой остановки производственного механизма. Для этого надо изменить полярность напряжения на зажимах обмотки якоря. Схема включения двигателя при торможении противовключением представлена на рис. 12. До перехода в режим противовключения якорь двигателя подключен к сети контактором КВ. Для осуществления торможения якорь двигателя отключается от сети этим контактором и снова включается в сеть контактором КН. При этом изменяется полярность напряжения на обмотке якоря и направление тока в нем. Двигатель создает тормозной момент и начинает останавливаться. Ограничение тока якоря в тормозном режиме производится путем включения добавочного сопротивления RB в цепь якоря. Переключение двигателя с помощью контакторов происходит автоматически, и скорость вращения двигателя за время переключения практически не изменяется.

Рис. 12. Схема включения двигателя при торможении противовключением

Следует иметь в виду, что если якорь двигателя не будет отключен от сети при скорости, близкой к нулю, то в соответствии со схемой включения двигателя начнется разбег его в обратном направлении.

При торможении противовключением двигатель Не только преобразует кинетическую энергию, запасенную в движущихся частях, в электрическую, но и потребляет энергию из сети. Энергия затрачивается (теряется) на нагрев сопротивлений в цепи якоря.

Из последнего равенства следует, что между моментом электродвигателя с последовательным возбуждением и его скоростью в области небольших нагрузок (ненасыщенная магнитная цепь) существует гиперболическая зависимость.

Механические характеристики электродвигателя с последовательным возбуждением при различных режимах работы приведены на рис. 14.

2. Электродвигатели с последовательным возбуждением

На рис. 13 приведена схема включения двигателя последовательного возбуждения.

Уравнение скоростной характеристики электродвигателя с последовательным возбуждением то же, что и для электродвигателя с параллельным возбуждением.

Поскольку магнитный поток пропорционален величине тока, можно, подставляя в формулу значение из равенства, получить путем преобразований выражение механической характеристики для двигателя с последовательным возбуждением:

Рис. 13. Схема включения двигателя постоянного тока последовательного возбуждения

Рис. 14. Механические характеристики двигателя с последовательным возбуждением при различных режимах работы

Анализ характера механической характеристики электродвигателя с последовательным возбуждением позволяет сделать следующие выводы:
а) при нагрузках ниже 20—25% номинальной работа электродвигателя на естественной характеристике практически недопустима из-за чрезмерного увеличения скорости вращения якоря (рис. 14, кривая 1);
б) с увеличением дополнительного сопротивления в цепи якоря жесткость механической характеристики уменьшается и она смещается вниз (рис. 14, кривая 2);
в) кривая механической характеристики асимптотически, как это следует из рис. 14, приближается к оси ординат, не пересекаясь с ней, из чего следует, что повышением скорости вращения нельзя перевести электродвигатель с последовательным возбуждением в генераторный режим работы с отдачей энергии в сеть (как это возможно у машины с параллельным возбуждением).

Читать еще:  Установка двигателя ваз на луаз как сделать

Для торможения машины с последовательным возбуждением обычно применяют противовключение или динамическое торможение.

При торможении противовключением механические характеристики являются продолжением характеристик двигательного режима в область отрицательной скорости. При этом в цепь двигателя вводится дополнительное сопротивление для ограничения тока. Двигатель с последовательным возбуждением работает в режиме противовключения при перемене полярности якоря. В обмотке возбуждения направление тока должно оставаться неизменным.

При динамическом торможении механические характеристики двигателя расположены в квадранте II. Тормозной момент в режиме динамического торможения при самовозбуждении уменьшается со снижением скорости машины.

Более эффективным является динамическое торможение с независимым возбуждением. В этом случае обмотка якоря отключается от сети и замыкается на внешнее сопротивление, а обмотка возбуждения подсоединяется к сети через дополнительное сопротивление. Поскольку в последнем случае двигатель работает генератором с независимым возбуждением, его характеристики подобны характеристикам двигателя с параллельным возбуждением при динамическом торможении. Эти характеристики прямолинейны и все пересекаются в начале координат, обладая большей жесткостью при меньших сопротивлениях.

Рис. 15. Схема включения двигателя в режиме динамического торможения при независимом питании обмотки возбуждения от сети

На рис. 15 приведена схема включения двигателя в режиме динамического торможения при независимом питании обмотки возбуждения от сети,

Двигатели постоянного тока, как обладающие большим пусковым моментом и выдерживающие значительные кратковременные перегрузки, нашли широкое применение в электроприводе крупных экскаваторов. К недостаткам применения двигателей постоянного тока относится необходимость установки преобразователей переменного тока в постоянный для питания этих двигателей.

Характеристики двигателя постоянного тока в режиме торможения

Название: Машины постоянного тока (Кислицын А. Л.)

Жанр: Энергетический

Просмотров: 1099

11. работа двигателей в тормозных режимах

Виды электрического торможения. Электрические двигатели используются не только для приведения во вращение механизмов, но и для их торможения. Электрическое торможение позволяет быстро остановить механизм или уменьшить его частоту вращения без применения механических тормозов.

Различают три вида электрического торможения двигателей постоянного тока:

рекуперативное торможение — генераторное торможение с отдачей электрической энергии в сеть;

динамическое или реостатное торможение — генераторное торможение с гашением выработанной энергии в реостате, подключенном к обмотке якоря;

электромагнитное торможение — торможение противовключением.

Во всех трёх указанных режимах электромагнитный момент М воздействует на якорь в направлении, противоположном п, т. е. является тормозным. Рассмотрим более подробно эти режимы.

Рекуперативное торможение. Двигатель с параллельным возбуждением переходит в режим рекуперативного торможения, если его частота вра

щения становится больше значения «0= и/(сеФ).Прв. этом ЭДС Е начинает превышать напряжение сети U. В этом случае ток якоря 1а изменяет своё направление и машина переходит в генераторный режим. В этом режиме машина создает тормозной момент, а выработанная электрическая энергия отдается в сеть и может быть полезно использована.

В машине с параллельным возбуждением (рис. 11.1, а) механические характеристики генераторного режима являются продолжением механических характеристик двигательного режима в область отрицательных моментов (рис. 11.1, б). Поэтому переход из двигательного режима в генераторный может происходить автоматически, если под действием внешнего момента якорь будет вращаться с частотойп > п0. Можно перевести машину в генераторный режим и принудительно, если перевести её на работу с характеристики 1 на характеристику 2, уменьшив п0 путем увеличения магнитного потока (тока возбуждения) или снижения напряжения, подводимого к двигателю.

Двигатель с последовательным возбуждением при его обычной схеме включения работать в генераторном режиме с отдачей энергии в сеть не может. Действительно, генераторный режим с отдачей энергии в сеть может возникнуть, когда E>U, что возможно, если и > п0. Поскольку у двигателя последовательного возбуждения я0= , то работа двигателя в генераторном режиме исключается. При необходимости рекуперативного торможения схему двигателей в тормозном режиме изменяют, превращая двигатели в генераторы с независимым возбуждением.

Двигатели со смешанным возбуждением могут автоматически переходить в генераторный режим, что обусловило их применение в троллейбусах, трамваях и других устройствах с частыми остановками, где двигатель должен обладать мягкой механической характеристикой.

Динамическое торможение. При этом виде торможения двигателя с параллельным возбуждением обмотку якоря отключают от сети и присоединяют к ней реостат Rdo6 (рис. 11.2, а).

Ток якоря при динамическом торможении меняет своё направление. При этом машина работает в генераторном режиме и создаёт тормозной момент, но выработанная электрическая энергия бесполезно гасится в реостате. Регулирование тока

т. е. тормозного момента М, осуществляют путём изменения сопротивления Rdo6, подключенного к обмотке якоря.

В процессе торможения по мере уменьшения скорости постепенно уменьшают Rdo6, чтобы поддержать средний ток якоря, а 7 следовательно, и

тормозной момент на заданном уровне (рис. 11.2, б). При очень больших частотах вращения в режиме торможения приходится уменьшать ток возбуждения, чтобы ЭДС машины Е не превзошла допустимого значения. При п — 0 тормозной момент М равен нулю, следовательно, машина не может быть заторможена в неподвижном состоянии.

При динамическом торможении двигателей последовательного возбуждения необходимо переключать обмотку возбуждения (рис. 11.3, а, б). Это делается для того, чтобы при изменении направления тока в якоре (при переходе из двигательного режима в генераторный) направление тока в обмотке возбуждения оставалось неизменным и создаваемая этой обмоткой МДС совпадала по направлению с МДС Foc т от остаточного маг-

нетизма якорной обмотки. В противном случае машина размагничивается. На рис. 11.4 показаны зависимости ЭДС Е от тока якоря 1а при различных частотах вращения (и, >п2>п3>пА) ивольтамперные характеристики Ia(^Ra + Rdo6)

ffla) полного сопротивления, включенного в цепь якоря

Точки пересечения Ах,Аг нА3 указанных зависимостей определяют зна-

чение тока якоря 1а =

е , т. е. частоту вращения п и сопротив-

ление Rdo6i при которых машина работает в режиме динамического торможения. Так, например, при подключении к машине реостата с сопротивлением Rdo6l тормозной режим при частоте вращения я, может быть

реализован (точка А г); при уменьшении же её до значения я2 он невозможен, так как в этом случае вольтамперная характеристика сопротивления цепи якоря располагается по касательной к зависимости Е

f(Ia), н0 не пересекает её. В соответствии с рис. 11.4 можно заключить, что при увеличении Rdo6 динамическое торможение оказывается возможным при

более высоких частотах вращения.

Двигатель со смешанным возбуждением также может работать в режиме динамического торможения.

Электромагнитное торможение. В этом режиме изменяют направление электромагнитного момента М, сохраняя неизменным направление тока из сети, т. е. момент делают тормозным. Последнее осуществляют так же, как и при изменении направления вращения двигателя — путём переключения проводов, подводящих ток,к обмотке якоря (рис. 11.5, а) или к обмотке возбуждения. Чтобы ограничить ток в этом режиме, в цепь обмотки якоря вводят

Читать еще:  Ауди 80 моновпрыск не падают обороты двигателя

добавочное сопротивление Rdo6- Регулирование тока 1а

тормозного момента М, осуществляют путём изменения сопротивления Rdo6

или ЭДС Е (тока возбуждения 1в). Механические характеристики в этом режиме для двигателей с параллельным и последовательным возбуждением показаны на рис. 11.5,6 и в.

С энергетической точки зрения электромагнитное торможение является наиболее невыгодным, поскольку машина потребляет как механическую, так и электрическую энергию, которые гасятся в обмотке якоря и во включенном в её цепь реостате. Однако при этом способе можно получать большие тормозные моменты при низких частотах вращения и даже при я= 0, поскольку в этом случае ток la

Кроме рассмотренных тормозных режимов,также представляет интерес так называемый режим противовключения, используемый для целей регулирования скорости опускания грузов на кранах и других подъёмно-транспортных машинах. Прежде чем приступить к рассмотрению данного режима, необходимо принять во внимание некоторые сведения относительно поведения электропривода и, следовательно, производственного механизма. Данное поведение при регулировании скорости и изменении нагрузки зависит от сил или моментов, действующих в системе, а также от моментов инерции и масс вращающихся и поступательно движущихся частей электропривода и производственного механизма. В системе двигатель — производственный механизм в общем случае действуют два момента: момент, развиваемый двигателем, и момент статического сопротивления. Момент статического сопротивления может быть вызван силами трения, силой тяжести груза, действием ветра, различного рода деформациями материалов и т. д., а также несколькими причинами одновременно. Чтобы уравнение движения электропривода было универсальным, скорость и моменты считают величинами алгебраическим и принимают для них следующие условные положительные направления. За условное положительное направление скорости принимают её направление, соответствующее подъёму грузов. За условное положительное направление момента М двигателя принимают направление, совпадающее с условным положительным направлением скорости, а за условное положительное направление момента статического сопротивления Мс- противоположное направление. В простейшем случае двигатель соединяется с рабочим органом производственного механизма без промежуточных передач. В этом случае с учётом принятых выше условных положительных направлений можно написать уравнение движения в виде

где М и Мс — момент двигателя и момент статического сопротивления в Н-м;

J-момент инерции частей, вращающихся со скоростью щ

о) — угловая скорость вращения двигателя в рад/с .

Выражение в правой части формулы представляет собой динамический момент Мдин = J- ^

, возникающий при всяком изменении скорости двигателя в связи с инерцией вращающихся частей двигателя и приводимого им в действие механизма.

В практике чаще пользуются не угловой скоростью, а скоростью п, выраженной в об/мин

Учитывая это, получим

Из (113) следует, что если момент двигателя равен моменту статического сопротивления, т. е. М = Мс, то — = 0, и, следовательно, п = const.

В этом случае имеет место установившийся режим работы электропривода, который характеризуется определённым постоянным значением момента и соответствующей ему скоростью. А теперь перейдём непосредственно к рассмотрению режима противовключения.

Под режимом противовключения понимают режим, при котором двигатель, будучи включен в сеть, под действием постороннего момента или запаса кинетической энергии вращается в сторону, противоположную той, в которую он вращался бы при таком же включении в двигательном режиме. Режим противовключения удобно пояснить на примере грузоподъёмного механизма, где он может быть использован для опускания грузов.

Допустим, что в схеме двигателя параллельного, последовательного или смешанного возбуждения (рис. 11.6) контакт К замкнут, двигатель работает на естественной характеристике и с постоянной скоростью п при моменте М= Мс поднимает груз.

Если разомкнуть контакт К и включить в цепь якоря сопротивление г, ток якоря и момент двигателя уменьшатся. Двигатель перейдёт при этом на характеристику /ив первое мгновение при скорости п будет развивать момент М,. Так как Мх 0), двигатель работает в тормозном режиме.

Данный режим является режимом противовключения, так как якорь двигателя вращается в направлении, противоположном тому, в котором он должен был бы вращаться при данном способе его включения в двигательном режиме. С увеличением | п в режиме противовключения возрастает что приводит к увеличению тока якоря и момента двигателя. Установившийся режим наступит при скорости п,, при которой М- Мс. Скоростные и механические характеристики (рис. 11.6) двигателей в режиме противовключения являются продолжением характеристик двигательного режима и располагаются в IV квадранте, где п 0 и М> 0.

Изменяя величину сопротивления г, можно получать различные скорости опускания груза в режиме противовключения. Недостатком режима противовключения является то, что характеристики получаются слишком мягкими^ скорость в сильной степени зависит от нагрузки двигателя. В частности, если окажется, что Мс 0)>то двигатель работает, по существу, в качестве генератора и преобразует потенциальную энергию опускающегося груза в электрическую энергию. Последняя, в свою очередь, преобразуется в тепло в сопротивлениях цепи якоря. В этих же сопротивлениях расходуется и энергия, потребляемая цепью якоря из сети. Обычно торможение противовключением предшествует изменению направления вращения двигателя (реверсированию).

Торможение двигателей постоянного тока с независимым возбуждением и тормозные характеристики

Если работающий двигатель постоянного тока с независимым возбуждением отключить от сети, то скорость его начнет постепенно снижаться до нуля. Время с момента отключения двигателя от сети до момента его полной остановки называется временем свободного выбега .

Чем больше мощность двигателя, тем больше масса якоря и его диаметр, тем дольше он будет останавливаться свободным выбегом. Это невыгодно для производственных механизмов, так как снижает производительность. Чтобы уменьшить время выбега, применяют электрическое торможение.

У двигателей постоянного тока существуют три способа торможения:
1. Генераторное (рекуперативное) торможение.
2. Реостатное торможение.
3. Торможение противовключением.

Генераторное (рекуперативное) торможение

Если под действием производственного механизма скорость вращения двигателя становится больше скорости идеального холостого хода, двигатель переходит в генераторный режим работы, называемый режимом генераторного торможения. При генераторном торможении скорость двигателя не сбрасывается до нуля, но зато имеется возможность не допустить дальнейшего увеличения скорости, и двигатель будет вращаться с постоянной скоростью, чуть больше скорости идеального холостого хода.

Генераторное торможение обеспечивает торможение двигателя, не допуская его разгон под действием производственного механизма.

Характеристика генераторного торможения является продолжением характеристики двигательного режима во 2-й квадрант.

Тормозные характеристики двигателей постоянного тока с независимым возбуждением.

Реостатное торможение

При реостатном торможении электрический двигатель отключается от сети и замыкается на активное сопротивление. При замыкании обмотки якоря на сопротивление, ток в якорной цепи меняет полярность, в результате чего переходит работать в точку a’, затем скорость двигателя начинает снижаться до нуля. Отрезок a’-0 – характеристика двигателя при реостатном торможении. Достоинством реостатного торможения является то, что двигатель сбрасывает скорость вращения до нуля.

Схема реостатного торможения двигателя постоянного тока с независимым возбуждением.

Торможение противовключением

Торможение противовключением – осуществляется двумя способами:
1. Изменением полярности на зажимах якоря.
2. Силовой спуск.

1. Изменением полярности на зажимах якоря.

Если изменить полярность на зажимах якоря двигателя, то в цепи якоря произойдет бросок тока намного больше, чем при реостатном торможении, и если двигатель работал в точке a, то при изменении полярности он перейдет работать в точку b, затем скорость начнет снижаться по характеристике b-b’.

Читать еще:  Где находится датчик температуры двигателя опель корса

Недостатком этого способа торможения является то, что если двигатель при скорости близкой к нулю не отключиться от сети, то произойдет реверс.

Время торможения этим способом будет намного меньше, чем при реостатном торможении, и, несмотря на это, этот способ торможения нельзя использовать для тех производственных механизмов, у которых реверс может привести к аварийной ситуации.

2. Силовой спуск. Его можно осуществить только на реостатной характеристике с добавочным сопротивлением в цепи якоря.

Если под действием производственного механизма двигатель изменит направление вращения, то в результате торможения скорость вращения будет оставаться постоянной и не позволит двигателю ее увеличить под действием производственного механизма.

Характеристики двигателя постоянного тока в режиме торможения

7.5. Работа электродвигателей в тормозных режимах

Электрические двигатели используются не только для приведения во вращение механизмов, но и для их торможения. Торможение необходимо, если нужно быстро остановить механизм или уменьшить его частоту вращения. Применение механических тормозов для этого затруднительно из-за нестабильности их характеристик, малого быстродействия и трудностей автоматизации.

Различаются три вида тормозных режимов двигателей постоянного тока:

1) генераторное торможение с отдачей электрической энергии в сеть (рекуперативное торможение);

2) генераторное торможение с гашением выработанной энергии в реостате, подключенном к обмотке якоря (реостатное, или динамическое, торможение);

3) электромагнитное торможение (торможение противовключе-нием).

Во всех трех режимах электромагнитный момент М воздействует на якорь в направлении, противоположном п, т. е. является тормозным. Рассмотрим более подробно эти режимы.

Рекуперативное торможение. Двигатель с параллельным возбуждением переходит в режим рекуперативного торможения, если его частота вращения превышает по=и/(сеф). Тогда ЭДС машины становится больше напряжения сети и ток меняет направление:

т. е. двигатель переходит в генераторный режим, создает тормозной момент, а выработанная электрическая энергия отдается в сеть и может быть использована.

Переход машины с параллельным возбуждением из двигательного режима в генераторный может происходить автоматически, если под действием внешнего момента якорь вращается с частотой, большей частоты вращения холостого хода: п

>п. Можно перевести машину в генераторный режим и принудительно, уменьшив частоту вращения п за счет увеличения магнитного потока (тока возбуждения) или снижения напряжения, подводимого к двигателю. Механические характеристики в генераторном режиме являются продолжением механических характеристик двигательного режима в область отрицательных моментов (рис. 7.23).

Двигатели с последовательным возбуждением не могут автоматически переходить в режим рекуперативного торможения. Если необходимо иметь рекуперативное торможение, схему двигателей в тормозном режиме изменяют, превращая двигатели в генераторы с независимым возбуждением. Двигатели со смешанным возбуждением могут автоматически переходить в генераторный режим, что обусловило их применение в троллейбусах и трамваях, где часты остановки, а двигатель должен обладать мягкой механической характеристикой.

Рис. 7.23. Механические характеристики двигателя с параллельным возбуждением в двигательном и генераторном режимах

Рис. 7.24. Схема включения двигателя с параллельным возбуждением в режиме динамического торможения (а), скоростные и механические характеристики при торможении (б)

Динамическое торможение. При динамическом (реостатном) торможении двигателя с параллельным возбуждением обмотка якоря отключается от сети и к ней присоединяется реостат /?д (рис. 7.24, о). При этом машина работает в генераторном режиме и создает тормозной момент. Однако выработанная электрическая энергия гасится в реостате. Ток якоря при торможении

прямо пропорционален частоте вращения п, вследствие чего скоростные характеристики I=f(n)—прямые, проходящие через начало координат (рис. 7.24, б).

Тангенс угла наклона характеристик у в масштабе равен сопротивлению в цепи якоря:

В процессе торможения по мере уменьшения скорости постепенно уменьшают Ял, плавно или ступенями, чтобы поддержать средний ток якоря, а следовательно, и тормозной момент на заданном уровне. При очень больших частотах вращения в режиме торможе-

нчя приходится уменьшать ток возбуждения, чтобы ЭДС машины Е не превзошла допустимого значения

Механические характеристики в тормозном режиме при постоянном магнитном потоке имеют тот же вид, что и скоростные характеристики, только масштаб по оси абсцисс меняется в соответствии с формулой М — счФ1а (рис 7 24, б)

При ослабленном поле (при уменьшенном токе возбуждения) характеристики остаются линейными, но увеличивается угол их наклона При л «О тормозной

момент равен нулю Следовательно, для того чтобы якорь был заторможен в неподвижном состоянии, реостатное торможение должно быть дополнено другим, например механическим

Двигатель с последовательным возбуждением может работать в режиме динамического торможения, но при переводе его в этот режим нужно переключить провода, подводящие ток к обмотке возбуждения (рис 7 25) Это необходимо для того, чтобы при изменении направления тока в якоре при переходе из двигательного режима в генераторный направление тока в обмотке возбуждения оставалось неизменным (от б к а, рис 7 25) и создаваемая этой обмоткой МДС Fв совпадала по направлению с МДС FOCT от остаточного магнетизма В противном случае генераторы с самовозбуждением размагничиваются

Построение тормозных характеристик поясняется рис 7 26, а. Если в цепь машины включено добавочное сопротивление /?д, то установившийся режим работы соответствует точке пересечения

Рис 7 25 Изменение схемы при переводе двигателя последовательного возбуждения (а) в режим динамического торможения (б)

Рис 7 26 Характеристики n=f(la) при реостатном торможении двигателя последовательного возбуждения и их построение

Рис. 7.27. Схема включения двигателя с параллельным возбуждением в режиме электромагнитного торможения и его механические характеристики

вольт-амперной характеристики сопротивления (2# + /?д) с характеристикой E—f(IB), которая близка к характеристике холостого хода. При Пх это точка аь при п2 — точка а2 и т. д. При некоторой критической скорости, когда вольт-амперная характеристика сопротивления совпадает с начальным прямолинейным участком характеристики E=f(la), машина размагничивается и ток становится близким к нулю. По координатам точек а, а2 и т. д. можно построить зависимость n—f(Ia); эти скоростные характеристики являются нелинейными (рис. 7.26, б).

Механические характеристики строятся на основании скоростных характеристик и моментной — М= =/(/о), они также нелинейны.

Электромагнитное тормо жение. В этом режиме изменяют направление электромагнитного момента М, сохраняя неизменным направление вращения, т. е. момент делают тормозным. Последнее осуществляют так же, как и при изменении

направления вращения двигателя, путем переключения проводов, подводящих ток к обмотке якоря (рис. 7.27, а) или к обмотке возбуждения. Чтобы ограничить ток в этом режиме, в цепь обмотки якоря вводят добавочное сопротивление /?д. Регулирование тока Ia=(U+E)/(I,R+RA), т. е. тормозного момента М, осуществляют изменением Ra (рис. 7.27, б) или ЭДС (тока возбуждения /„).

С энергетической точки зрения рассматриваемый способ торможения невыгоден, так как машина потребляет как механическую, так и электрическую энергию, которые гасятся в обмотке якоря и включенном в ее цепь реостате. Но при этом способе можно получать большие тормозные моменты при низких частотах вращения и даже при п = 0, поскольку в этом случае ток Ia= U/ (2/? + /?д).

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector