Autoservice-mekona.ru

Автомобильный журнал
6 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Этанольное моторное топливо для автомобильных двигателей что это

Этанольное моторное топливо для автомобильных двигателей что это

ОАО ВНИИНП и ЗАО НПО «Химсинтез» создано этанолсодержащее топливо – БЕНЗАНОЛ. Разработан ГОСТ Р 52201-2004 — «Этанольное моторное топливо для автомобильных двигателей с принудительным зажиганием. Бензанолы, который действует с 1 июля 2004 года.

В настоящее время ассортимент и качество вырабатываемых и применяемых автобензинов определяется не только техническими возможностями нефтепереработки и нефтехимии, но и структурой автомобильного парка страны, а также экологическими требованиями, которые в последнее время стали определяющими.
Ужесточаются требования по содержанию серы; ароматических, в том числе бензола, и олефиновых углеводородов; по испаряемости бензинов. Производство в России автомобильных бензинов с улучшенными экологическими свойствами остается актуальным, так как отсутствуют в необходимом количестве традиционные бензиновые компоненты компаундирования: алкилат, изомеризат, оксигенаты. Большинство НПЗ находятся в эксплуатации от 30 до 50 лет, значительная часть их устарела и нуждается в модернизации. Однако из-за скудости финансирования модернизация и строительство новых установок сдерживаются. Поэтому одним из решений проблемы получения таких автомобильных топлив является использование в качестве высокооктанового компонента этилового спирта.
Использование этанола в качестве добавки к моторным топливам для двигателей с искровым зажиганием широко известно. Уже в восьмидесятых годах прошлого века началось массовое производство обезвоженного спирта и использование его в бензинах в США, Канаде, Бразилии, ряде стран Европы. Практически все ведущие производители автомобилей (за исключением отечественных) допускают введение в топливо до 10% этанола. В Бразилии, благодаря мягким климатическим условиям, более половины автомобильного парка используют этанол в качестве основного вида топлива. В США широко используется «газохол», содержащий от 5,7 до 10% этанола. Производится топливный этанол на гигантских спиртзаводах производительностью до 1000 тонн абсолютированного спирта в сутки.
Российская Федерация до последнего времени несколько отставала в решении этих проблем. Причин тому несколько. Во-первых, наличие достаточно дешевой нефти, во-вторых, отсутствие производств абсолютированного этанола из возобновляемых источников сырья и, в третьих, отсутствие комплексного подхода к решению данных вопросов. Тем не менее, в 1999 году в России были разработаны и утверждены технические условия на бензины автомобильные неэтилированные, содержащие до 5% масс. этанола (ТУ 38.401-58-244-99). В 2002 году введен ГОСТ Р 51866-2002, предусматривающий выпуск бензинов с 5% об. этилового спирта, что составляет не более 2,7% по кислороду. Однако по тем же причинам эти решения практически не нашли применения.
Толчком к решению проблемы применения этанола в топливе послужили совместные действия ОАО ВНИИНП и ЗАО НПО «Химсинтез», направленные на создание в России нового (для нас) вида топлива, получившего название БЕНЗАНОЛ. С этой целью с подачи названных организаций в Общероссийский классификатор продукции была внесена отдельная подгруппа 02 5140 «Альтернативные виды топлива», а в составе этой подгруппы выделена позиция 02 5142 «Этанольное моторное топливо с содержанием этанола свыше 5% по объему для двигателей внутреннего сгорания с принудительным зажиганием».
Следующим шагом явилась разработка национального стандарта ГОСТ Р 52201-2004  «Этанольное моторное топливо для автомобильных двигателей с принудительным зажиганием. Бензанолы. Общие технические требования», с датой введения в действие с 1 июля 2004 года.
Настоящий стандарт устанавливает основные технические требования к топливам «Бензанолы» (таблица 1), а также основные требования по безопасности и охране окружающей среды. Необходимость создания нового ГОСТа связана с тем, что бензанолы являются самостоятельным видом продукции, отличающимся от бензинов по отдельным техническим характеристикам.
В отличие от показателей качества, нормируемых для традиционных автомобильных бензинов, к бензанолам предъявляются дополнительно следующие требования:
— объемная доля этанола в пределах 5-10%;
— содержание кислорода не более 3,5% масс.;
— антикоррозионные свойства (степень коррозии стального стержня);
— фазовая стабильность (температура помутнения).

Кроме того, в связи с использованием в бензанолах этилового спирта, к ним могут применяться специальные меры государственного регулирования их производства и оборота.
Помимо ГОСТ Р 52201-2004 на бензанолы разработаны и утверждены технические условия ТУ 38.401-58-330-2003, где в зависимости от детонационной стойкости предусмотрены три марки бензанолов: БИ-80, БИ-92 и БИ-95, все октановые числа приведены по исследовательскому методу. Следует отметить, что введение в бензин до 5% этилового спирта не дает того антидетонационного эффекта, который позволил бы получить на базе АИ-92 бензин АИ-95. Использование же до 7-10% этанола позволяет без дополнительных антидетонационных присадок получить прирост октанового числа более чем на 3 единицы. При этом, благодаря более полному сгоранию топлива, количество вредных выбросов снижается на 20-30%.

Таблица 1.Показатели качества бензанолов

В соответствии с утвержденной инструкцией по производству бензанолов в ЗАО НПО «Химсинтез» выработаны опытно-промышленные партии, представляющие смесевое автомобильное топливо с содержанием этилового спирта до 7,8% масс., и проведены квалификационные испытания. По результатам квалификационных испытаний было отмечено, что бензанолы имеют хорошее распределение детонационной стойкости по фракциям: для БИ-80 – 1,12, БИ-92 и БИ-95 – 0,98; низкое содержание ароматических углеводородов, которое составляет в БИ-92 –26,8% об. и БИ-95- 30,6% об., в том числе содержание бензола не превышает 2%.
Однако, наряду с очевидными преимуществами бензанолов, они имеют определенный недостаток, связанный с повышением коррозионной агрессивности топлива при наличии в нем этанола. При этом, с другой стороны, наличие в топливе спирта способствует очищению топливной системы. Коррозионная агрессивность существенно возрастает в присутствии растворённой воды и в ещё большей степени в присутствии отделённой от спирта свободной воды. Кроме того, наличие в спирте воды может приводить к расслоению топлива и к снижению антдетонационного эффекта за счет абсорбирования спирта водой и снижения концентрации его в топливе. В частности, исследования показали, что в бензанолах недопустимо использование спирта ректификата крепостью 96,5%. Таким образом, для исключения попадания в бензанол воды кроме очевидных мер по его должному хранению необходимо применять только обезвоженный (абсолютированный) спирт с содержанием воды не более 0,1-0,2%.
Первым предприятием в России, успешно производящим абсолютированный спирт из растительного сырья, стало ОАО «Биохим» (Тамбовская область), где совместно с ЗАО НПО «Химсинтез» создана установка азеотропной перегонки спирта в присутствии циклогексана. Производительность этого завода (1500 дал спирта в сутки) позволяет обеспечить изготовление до 50 000 тонн бензанола в год. В настоящее время ЗАО НПО «Химсинтез» совместно с ЗАО «Зернопродукт» (Тульская область) начато создание установки, обеспечивающей обезвоживание до 10 000 дал спирта в сутки путем адсорбции воды на молекулярных ситах. Установка должна быть внедрена до конца года.
Дополнительным средством борьбы с коррозией является применение антикоррозионных присадок. Проведенные ОАО ВНИИНП исследования показали, что использование таких присадок как DCI 11, СВ-20, Амдор-ЭМ позволяют полностью исключить коррозионное воздействие этанола на стальные изделия.
Оценка антикоррозионных свойств присадок проводилась по аналогу применяемых за рубежом методов А DIN 51585 и ASTM D 665 B, с использованием стандартного отечественного прибора АСМ-1. Сущность метода заключается в определении коррозии стального стержня (Ст. 3), погружённого в смесь испытуемого топлива и дистиллированной воды.
В табл. 2 представлены результаты оценки антикоррозионной эффективности испытанных присадок.

Таблица 2. Результаты оценки антикоррозионной эффективности присадок (по отношению к Ст. 3 в присутствии дистиллированной воды).

Образец

Результаты испытаний по оценке влияния ингибиторов коррозии на физико-химические и антидетонационные свойства бензанола показали, что наличие присадок СВ-20 (0,005%), Амдор-ЭМ (0,0025%), DCI 11 (0,0016%) не приводит к существенному изменению качественных показателей исходного бензанола.
Таким образом, проблемы, связанные с повышением коррозионной активности бензанола по сравнению с бензином, могут быть успешно решены за счет использования абсолютированного спирта и антикоррозионных присадок.
В заключение следует отметить, что, таким образом, в Российской Федерации предприняты первые успешные шаги по созданию нового для нашей страны вида спиртосодержащего моторного топлива.
В настоящее время ЗАО НПО «Химсинтез» ведется подготовка к промышленному выпуску бензанолов для нужд автопредприятий г. Москвы.

В.П. Баранник, В.В. Макаров, А.А. Петрыкин,
А.В. Шамонина, ЗАО НПО «Химсинтез», Красноармейск
В.Е. Емельянов, С.Н. Онойченко, ОАО ВНИИ НП, Москва

Источник: ГСМ

C текущей ситуацией и прогнозом развития российского рынка горюче-смазочных материалов можно познакомиться в отчетах Академии Конъюнктуры Промышленных Рынков:

В чём плюсы и минусы биоэтанола

О том, что для двигателей автомобилей можно использовать растительное топливо, известно ещё со времён первых самоходных тележек. Но лишь в последние годы эта идея вновь стала актуальна. Виной тому неуклонно повышающиеся цены на нефть.

В последнее время в мировой прессе всё чаще публикуются сообщения об опасности и даже вредности массового перевода автомобилей на биоэтанол. Одно авторитетное мнение очень скоро оспаривается другим, не менее авторитетным. Критика настолько жёсткая, что поневоле вызывает недоумение. Как такое может быть: ведущие страны принимают энергетические стратегии, которые, если верить скептикам, совершенно бездумны и являются кратчайшим путём к масштабным экологическим и экономическим катастрофам? Где правда? Попробуем разобраться.

Противники сжигания этанола в двигателях внутреннего сгорания приводят убедительные доводы. Они не опровергают факта, что при использовании этилового спирта выхлоп автомобилей становится намного чище. Это действительно так. Главная же беда — в самом производстве этого вида топлива, когда в атмосферу выбрасываются огромные количества углекислого газа. А значит, вся экологическая эффективность использования спиртосодержащих смесей сводится на нет. И бравые лозунги о борьбе с глобальным потеплением, об изменении климата не только теряют свою актуальность, но даже смешны.

Правы они? И да и нет. Производство этанола действительно насыщает атмосферу парниковыми газами (ещё они называются GHG — от greenhouse gas) в количествах, сопоставимых с выбросами бензиновых двигателей внутреннего сгорания. Но у всякой монеты есть и обратная сторона. Дело в том, что в процессе производства и сжигания 1 литра этанола из растительного сырья в атмосферу попадает ровно столько же CO2, сколько до этого было поглощено теми же самыми растениями в результате реакции фотосинтеза. По сути производство этилового спирта есть не что иное, как «фотосинтез наоборот», с той лишь разницей, что в одном случае требуется солнечный свет, а в другом — выделяется тепло.

Получается, биоэтанол абсолютно нейтрален в качестве источника парниковых газов. Значит — лучше от него не станет, но и хуже не будет, в отличие от продуктов переработки нефти. Есть у этилового спирта и ещё одно преимущество: положительный энергетический баланс. В зависимости от вида сырья последний может колебаться от 1,24 до 8. То есть при сжигании этанола выделяется в несколько раз больше энергии, чем затрачивается при его производстве. В этом смысле «скандальное топливо» на порядок превосходит бензин или солярку. Только вообразите себе расходы на разведку, добычу, транспортировку, переработку нефти, и вы поймёте, что топливный баланс нефтяных продуктов значительно меньше единицы.

Читать еще:  Что нужно чтобы заменить двигатель на более мощный

Но и без недостатков у C2H5OH не обходится. При сгорании 1 литра этилового спирта выделяется на 34% меньше энергии, чем при сгорании того же объёма бензина. Выходит, что если заправлять автомобиль топливом с содержанием этанола (к примеру, широко пропагандируемой смесью с бензином E85), то расход топлива неизбежно возрастёт вплоть до этих самых 34% — всё будет зависеть от концентрации спирта в каждом конкретном случае. Но с этой печальной картиной столкнутся лишь владельцы машин с двигателями, изначально рассчитанными на традиционный бензин и лишь затем адаптированными под новомодное топливо.

Нельзя забывать, что октановое число этанола равно 105. Это означает, что его можно сжигать в двигателях с куда большей степенью сжатия. Так что, в принципе, двигатели, рассчитанные исключительно на новый источник энергии, должны быть уж никак не хуже нынешних бензиновых или дизельных собратьев. И в плане экономичности, и в плане мощностных характеристик. А уж про экологию и говорить не приходится! Примерно на 80% уменьшаются выбросы углеродных соединений, а конкретно CO2 снижаются на 30%. Но заливать в такие машины бензин категорически нельзя — детонация мигом убьёт технологичный мотор.

В этом смысле весьма пессимистично выглядят перспективы так называемых многотопливных (чаще всего битопливных) автомобилей. Они могут называться Flex Fuel, Flexifuel, BioFlex, и как угодно ещё — всё зависит от фантазии фирм-производителей. Про такие разработки мы писали уже не раз и не два. Причём если некоторые носят статус концептов, то другие — вполне себе серийные машинки. Но у всех этих автомобилей есть один противный недостаток — этанол там сжигается неэффективно, ведь степень сжатия нельзя изменить, просто нажав кнопку на панели.

Получается забавная ситуация: на бензине Flexifuel-машина едет хорошо, а на E85 (если кто забыл, это коктейль из 85% этанола и 15% бензина), , плохо, а , «жрёт» ощутимо больше. Да, биоэтанол дешевле бензина, но не намного. Зря вы думаете, что с этим топливом сэкономите сколько-нибудь значимую сумму. Может даже случиться и так, что будут одни убытки. Смотря как ездить — на одной лишь «зелёной» ориентации недалеко окажешься. Поэтому не удивляйтесь, что внедрение, казалось бы, перспективной идеи сопровождается законодательным регулированием, например в США и Бразилии.

Стоит тормознуть и поговорить подробнее, ибо в этих странах внедрение биоэтанола зашло очень далеко. Бразильцы очень не любят топливные кризисы c 1973 года. И всячески стараются их предотвратить. Так, с в стране функционирует масштабная биотопливная кампания. Не стоит поэтому удивляться, что 4,5% площади Бразилии заняты плантациями сахарного тростника, а большинство местных автомобилей можно с чистой совестью причислить к заядлым алкоголикам. За год миллион бразильских рабочих производит двадцать с лишним миллиардов (!) литров этанола.

Назвать экономику этой страны зависимой от нефти никак нельзя. Выращивая и перерабатывая сахарный тростник, Бразилия полностью обеспечивает себя топливом и электричеством. Всё это безусловно радует, но даже в бочке спирта нашлось место вездесущему дёгтю. Ради новых плантаций бразильцы вырубают леса Амазонки. Можно назвать это странной и недальновидной политикой, а если сказать прямо — то это настоящий идиотизм. Как жить без «лёгких планеты»?

Похожая ситуация складывается и в США. Президент Буш выдвинул программу «20 за 10», которая должна помочь к 2017 году снизить потребление бензина на 20%. За счёт чего? Разумеется, за счёт этанола. К озвученному сроку власти намерены увеличить его производство до 30 с лишним миллиардов литров. За последние годы инвестиции только в исследования перевалили за 12 миллиардов долларов. И это только начало.

В Америке производят этанола хоть и много, но чуть меньше, чем в Бразилии. Правда, делают его не из тростника (он в Штатах расти не хочет), а из кукурузы. Такой вариант менее эффективен, а стало быть, себестоимость американского эталона выше бразильского. Тем не менее программу активно продвигают власти многих штатов, и губернатор «кукурузного» Иллинойса, кандидат в президенты Барак Обама (Barack Obama), — не исключение. Принимаются новые требования к бензиновому топливу, которое должно содержать 10% этанола (такая пропорция безопасна для традиционных двигателей).

Достигнут ли американцы своих целей? Каково будущее всей этой затеи с биоэтанолом? Пока что всё туманно. Ясно одно — рассчитывать на тотальный переход к спиртовым двигателям нереально. Если предположить стопроцентную эффективность процесса переработки, то для того, чтобы только США перевести с нефти на этанол, нужно 75% сельскохозяйственных земель нашей планеты засеять соответствующими культурами. Грубо говоря, если даже всю Луну засадить тростником, этого окажется недостаточно.

Массовое культивирование культур для производства этанола неизбежно окажет значительное влияние на сельское хозяйство. Фермеры не дураки — раз спрос на кукурузу растёт, они будут её сеять везде, где смогут. А кто при этом подумает о миллионах голодающих жителей Земли? Поэтому многие исследователи и негодуют, утверждая, что «выращивать» биотопливо в то время, когда людям есть нечего, — низкое, подлое и вообще аморальное занятие.

Впрочем, к любой критике надо относиться со здоровой долей скептицизма. Сами по себе биотопливные программы вполне разумны и при грамотной реализации способны принести ощутимую пользу. Стоит только иметь в виду, что повсеместное внедрение этанола окажет ощутимое влияние на мировую экономику. И, разумеется, найдутся те, чьи интересы пострадают. Пример: так называемый саммит «табачных королей» 1988 года, где боссы крупнейших компаний обсуждали, как бы нейтрализовать политику ВОЗ по борьбе с курением. И есть ли гарантия, что подобные действия не предпринимают сейчас все те, кто почувствовал угрозу нефтяному бизнесу? , как ни крути, а внедрение биотоплива — это вопрос не столько научный и экономический. Здесь вступает в дело большая политика.

ГОСТ Р 53199-2008 Топливо этанольное. Определение этанола методом газовой хроматографии

Текст ГОСТ Р 53199-2008 Топливо этанольное. Определение этанола методом газовой хроматографии

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

ТОПЛИВО ЭТАНОЛЬНОЕ

Определение этанола методом газовой хроматографии

ГОСТ Р 53199—2008

Предисловие

Цели и принципы стандартизации а Российской Федерации установлены Федеральным законом от 27 декабря 2002 г. № 184-ФЗ «О техническом регулировании», а правила применения национальных стандартов Российской Федерации — ГОСТ Р 1.0 — 2004 «Стандартизация в Российской Федерации. Основные положения »

Сведения о стандарте

1 ПОДГОТОВЛЕН Открытым акционерным обществом «Всероссийский научно-исследовательский институт по переработке нефти» (ОАО «ВНИИНП») на основе собственного аутентичного перевода стандарта, указанного в пункте 4

2 ВНЕСЕН Техническим комитетом по стандартизации ТК 31 «Нефтяные топлива и смазочные материалы»

3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТ8ИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 25 декабря 2008 г. № 677-ст

4 Настоящий стандарт идентичен стандарту АСТМ Д 5501—2004 «Стандартный метод определения содержания этанола в денатурирированном этанольном топливе газовой хроматографией» (ASTM О 5501—2004 «Standard test method for determination of ethanol content of denatured fuel ethanol by gas chromatography»).

Наименование настоящего стандарта изменено относительно наименования указанного стандарта АСТМ для приведения в соответствие с ГОСТ Р1.5—2004 (подраздел 3.5).

При применении настоящего стандарта рекомендуется использовать вместо ссылочных стандартов АСТМ соответствующие им национальные стандарты Российской Федерации, сведения о которых приведены в дополнительном приложении А

5 ВВЕДЕН ВПЕРВЫЕ

Информация об изменениях к настоящему стандарту публикуется в ежегодно издаваемом информационном указателе «Национальные стандарты», а текст изменений и поправок — в ежемесячно издаваемых информационных указателях «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячно издаваемом информационном указателе «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет

Настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания без разрешения Федерального агентства по техническому регулированию и метрологии

ГОСТ Р 53199—2008

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

Определение этанола методом газовой хроматографии

Determination of ethanol content by method of gae chromatography

Дата введения — 2010—01—01

1 Область применения

1.1 Настоящий стандарт распространяется на этанольное топливо и устанавливает метод газовой хроматографии определения этанола.

1.2 Массовая доля этанола определяется в диапазоне от 93 % до 97 %, метанола — от 0.1 % до

8 настоящем стандарте приведены формулы для пересчета содержания этих спиртов из процентов по массе в проценты по объему.

1.3 Настоящий метод позволяет идентифицировать метанол и определять его количественно, но не предусматривает идентификацию всех индивидуальных компонентов, из которых состоит денатурирующий агент (бензин).

1.4 Содержание воды не может быть определено настоящим методом, ее количество измеряют, например, методом по АСТМ Д 1364. а результат используют для уточнения хроматографических значений.

1.5 Настоящий метод не применим для примесей, температура кипения которых выше 225 *С. или примесей, которые не вызывают или вызывают слабый отклик пламенно-ионизационного детектора, таких как вода.

1.6 Значения, установленные в единицах СИ. следует рассматривать какстандартныв. Значения, приведенные в скобках, носят исключительно информационный характер.

1.7 Стандарт не ставит целью включать все меры техники безопасности, если таковые имеются, связанные с его применением. Пользователь стандарта ответственен за установление необходимых правил техники безопасности перед его применением.

2 Нормативные ссылки*

2.1 В настоящем стандарте использованы нормативные ссылки на следующие стандарты;

АСТМ Е 355 Руководство по терминам и определениям газовой хроматографии

АСТМ Е 594 Руководство по испытанию пламенно-ионизационных детекторов, используемых в газовой хроматографии

АСТМ Е1064 Метод определения воды в органических жидкостях кулонометрическим титрованием Карла Фишера

АСТМ Д1298 Метод определения плотности.относитвльной плотности (удельного веса) или плотности в градусах API сырой нефти и жидких нефтепродуктов ареометром

АСТМ Д1364 Метод определения воды в летучих растворителях (метод с реактивом Фишера)

* Для недатированных ссылок следует применять последнее издание стандартов, включая все изменения.

ГОСТ Р 53199—2008

АСТМ Д 40S2 Метод определения плотности и относительной плотности жидкостей с помощью цифрового денсиметра

Читать еще:  Bmw какой лучше двигатель дизельный или бензиновый двигатель

АСТМ Д 4057 Руководство по ручному методу отбора проб нефти и нефтепродуктов

АСТМ Д 4307 Руководство по приготовлению жидких смесей для использования в качестве аналитических стандартов

АСТМ Д 4626 Руководство по расчету факторов отклика газовой хроматографии

АСТМ Д4806 Спецификация на денатурированный топливный этанол для смешивания с бензинами. используемый в качестве моторного топлива для двигателей с искровым зажиганием

3 Термины и определения

В настоящем стандарте применены термины по АСТМ Е 355 и АСТМ Е 594.

4 Сущность метода

Представительную аликвоту образца этанольного топлива помещают в газовый хроматограф, оснащенный капиллярной колонкой с полидиметилсилоксановой фазой, привитой к внутренней поверхности колонки. Газом-носителем является гелий, который переносит испаряющийся образец через колонку, где компоненты разделяются в процессе хроматографии. Компоненты детектируются плазменно-ионизационным детектором по мере того, как они элюируют в колонке. Сигнал детектора обрабатывается электронной системой сбора данных. Идентификация метанола и этанола происходит путем сравнения их времени удерживания со временем удерживания, определенным для стандартных растворов при одинаковых условиях. Массовые доли (% масс.) всех компонентов определяют по нормализованным площадям пиков.

5 Значение и применение

5.1 Этанольное топливо должно быть денатурировано бензином и соответствовать определенным стандартам. Определение количества денатурирующего агента важно для обеспечения соответствия смешанных топлив национальным стандартам. Настоящий стандарт устанавливает метод определения процентного количества этанола (т.е. массовой илиобъемной доли этанола какосновного вещества) в этанольном топливе, которое смешано с бензином.

6 Аппаратура

6.1 Газовый хроматограф, условия работы которого приведены в таблице 1. Для надлежащего введения образца применяют инжектор с испарителем, обеспечивающий ввод образца с оптимальным соотношением деления потока (например 200:1). Регуляторы расхода газа-носителя должны быть соответствующей точности, чтобы обеспечивать воспроизводимость расхода газа в колонке и соотношение деления потоков для поддержания прецизионности метода. Оборудование и способы контроля давления должны быть такими, чтобы поддерживать линейную скорость, необходимую в используемой колонке. Примвняютлламвнно-ионизационный детектор, связанныйсгазовыми регуляторами и электроникой и позволяющий получить оптимальный отклик при работе с капиллярной колонкой.

Таблице 1 — Типичные параметры проведения анализа

Начальная температура. ‘С

Начальное время удерживания, мин

Скорость программирования. ‘С/мин

Конечная температура. ‘С

Время анализа, мин

ГОСТ Р 53199—2008

Окончание таблицы 1

Соотношение деления потоке

Объем образце. мкл

Газ для образования пламени

Водород (-30 см 5 /мин)

Газ для окисления

Воздух (>300 см’/мин)

Геэ для поддува

Линейная скорость, см/с

6.2 Введение образца

Применяют ручной или автоматический ввод образца шприцем в инжектор. Применяют устрой* ства. обеспечивающие объем вводимого образца в диапазоне от0.1 до 0.5 мкл. Следует учесть, что плохая методика ввода образца, неподходящая конструкция испарителя, перегрузка колонки могут привести к плохому разделению. Избегают перегрузки колонки особенно по пику этанола и устраняют ее во время проведения анализа.

Используют капиллярную колонку из кварцевого стекла с привитой неполярной полидиметилси* локсановой фазой. Возможно применение других колонок, эквивалентных по эффективности, разрешающей способности и полярности.

6.3.1 Применяют капиллярную колонку длиной 150 м с толщиной стенки 0,25 мм. покрытую привитой пленкой лолидиметилсилоксана в качестве неполярной неподвижной фазы толщиной 1 мкм. или капиллярнуюколонку длиной 100 мс толщиной стенки 0.25 мм и толщиной пленки полидиметилсилокса-на 0.5 мкм.

6.4 Электронная система сбора данных — это любое устройство для сбора и обобщения данных, используемое для количественного определения и выполняющее, как минимум, следующие функции:

6.4.1 обработку по крайней мере 80 пикое/анализ;

6.4.2 расчет нормируемого процента на основании площади пика и использования факторов отклика:

6.4.3 идентификацию индивидуальных компонентов по времени удерживания;

6.4.4 способность устранять шумы и всплески (ложные лики);

6.4.5 различные скорости реагирования на быстрые (менее 1 с) пики;

6.4.6 расположение положительной и отрицательной корректировкой наклона базовой линии:

6.4.7 изменение чувствительности определения для узких и широких пиков;

6.4.8 разделение нечетких пиков путем проведения перпендикуляра от вершины к основанию или касательной.

7 Реактивы и материалы

7.1 Чистота реактивов

Во всех испытаниях должны использоваться реактивы класса х.ч.

7.2 Гелий, газ-носитель, чистотой не менее 99,95 % мол. Используют системы удаления кислорода и фильтры (Предупреждение — Сжатый газ под высоким давлением).

ГОСТ Р 53199—2008

7.3 Г азы детекторные: водород, воздух и азот

Чистота водорода и азота должна быть не менее 99.95 %. Воздух не должен содержать углеводоро* ды. Подачу детекторных газов рекомендуется проводить через фильтры (Предупреждение — Водород —огнеопасный газ при высоком давлении; воздух и азот — сжатые газы под высоким давлением).

7.4 Стандартные образцы для калибровки и идентификации

Анализируемые стандартные образцы используют для идентификации по времени удерживания всех компонентов, а также для калибровки при количественных измерениях. Эти вещества должны быть известной чистоты и не содержать других анализируемых компонентов.

7.4.1 Этаноп (Предупреждение — Легковоспламеняющийся и может быть вредным или смертельным при проглатывании или вдыхании), см. примечание.

Примечание — Только этанол чистотой не менее 99.5 % отвечает требованиям настоящего метода испытания.

7.4.2 Метанол (Предупреждение — Легковоспламеняющийся и может быть вредным или смертельным при проглатывании или вдыхании).

7.4.3 Гептан (Предупреждение — Легковоспламеняющийся и может быть вредным или смертельным при проглатывании или вдыхании).

8 Отбор проб

8.1 Этанол для денатурирования можвтбытьотобранеоткрытый контейнер, таккаклредполагае-мое давление его паров менее 21 кПа (3 фунта на квадратный дюйм). Более подробно отбор проб изложен в АСТМ Д 4057. После наполнения образцом контейнер сразу закупоривают.

8.2 Переносят аликвоту образца в пробирку с мембраной и опечатывают. Получают испытуемую порцию для анализа прямо из опечатанной бутылки с мембраной механическим или автоматическим инжекционным шприцем.

9 Подготовка аппаратуры

9.1 Собирают и проверяют колонку в соответствии с инструкциями изготовителя. После создания соответствующих условий прикрепляют колонку выходным отверстием к входному отверстию пламенно-ионизационного детектора и проверяют на утечку всю систему. Когда перед работой обнаружена утечка, уплотняют или перемещают фитинги.

9.2 Устанавливают скорость потока газа-носителя так. чтобы при начальной температуре потока линейная скорость raeajr была в диапазоне от 21 до 24 см/с, рассчитывая ее по формуле

где]Г— линейная скорость газа, см/с;

L — длина колонки, см; fm — время удерживания метана, с.

Скорость потока устанавливают увеличением или снижением давления газа-носителя в инжекторе.

9.3 Устанавливают рабочие параметры газового хроматографа (таблица 1) и поддерживают равновесие системы.

Линейность газохроматографической системы должка быть установлена перед анализом образцов.

9.4.1 Используемое соотношение разделения потоков зависит от характеристик линейности разделения отдельного инжектора и объема колонки. Объем отдельной колонки по отношению к компоненту образца пропорционален количеству жидкой фазы (с учетом набивки или толщины пленки) и соотношению температуры колонки к температуре кипения компонента (давление паров). Перегрузка колонки может вызвать потерю разрешения для компонентов и несоответствие по времени удерживания. так как получаемые пики будут искажены. Это может привести к ошибочной идентификации комло-

ГОСТ Р 53199—2008

ментов. Во время оценки колонки и исследования линейности пиков в первую очередь обращают внимание на их асимметрию, указывающую на то. что колонка перегружена. Отмечают количество ком* понента и впоследствии избегают условий, приводящих к этому во время реального анализа.

9.4.2 Линейность разделения потока должна быть установлена так. чтобы обеспечивать правиль-ность количественных результатов анализа. Используют стандартную смесь с известным составом этанола. метанола и 10—20 чистых углеводородов в процентах по массе, перекрывающих диапазон кипения настоящего метода определения. Определенный массовый процент для каждого компонента должен соответствовать известной по массе концентрации с расхождением ± 3 %.

9.4.3 Линейность пламенно-ионизационного детектора (ПИД) должна быть подтверждена. Следует обращаться к АСТМ Е594 по соответствующей процедуре. График зависимости площадей пиков от концентрации этанола для приготовления стандартов в диапазоне интересующих концентраций должен быть линейным. Если график нелинейный, то соотношение разделения должно быть увеличено ил и диапазон детектора должен быть менее чувствительным.

10 Калибровка и идентификация

Используя н-гептан в качестве растворителя, определяют время удерживания этанола и метанола. анализируя их раздельно или в известных смесях, в количествах, пропорциональных их ожидаемому содержанию в испытуемой смеси.

Таблица 2 —Типичные мессы компонентов

Типичный кассовый относительный фактор отклика*

Относительная платность при 15.56 *С (60 *F)

Биоэтанол

Биоэтанол — обычный этанол, получаемый в процессе переработки растительного сырья для использования в качестве биотоплива. Мировое производство биоэтанола в 2005 году составило 36,3 млрд литров, из которых 45 % пришлось на Бразилию и 44,7 % — на США. Этанол в Бразилии производится преимущественно из сахарного тростника, а в США — из кукурузы. Производство этанола из тростника на сегодняшний день экономически более выгодно, чем из кукурузы. Федеральное правительство США предоставляет производителям этанола налоговый кредит (но не субсидии) до $0,51 за галлон этанола. Бразильский этанол дёшев из-за низких заработных плат у сборщиков сахарного тростника.

США в августе 2005 года приняли «Энергетический Билль» («Energy Policy Act of 2005»), и «Стандарт возобновляемых видов топлива» («Renewable Fuels Standard»). Они предусматривают к 2012 году ежегодное производство 30 миллиардов литров этанола из зерновых и 3,8 миллиард литров из целлюлозы (стебли кукурузы, рисовая солома, отходы лесной промышленности и т. д.).

Содержание

  • 1 Сырьё для производства биоэтанола
  • 2 Методы производства
    • 2.1 Брожение
      • 2.1.1 Промышленное производство спирта из биологического сырья
      • 2.1.2 Гидролизное производство
  • 3 Этанол как топливо
    • 3.1 В России
  • 4 Топливные смеси этанола
  • 5 Энергоэффективность этанола
  • 6 Экономическая эффективность производства этанола
  • 7 Экологические аспекты применения этанола в качестве топлива
  • 8 Автомобили, использующие биоэтанол в качестве топлива
  • 9 См. также
  • 10 Примечания
  • 11 Ссылки

Сырьё для производства биоэтанола [ править | править код ]

В настоящее время большая часть биоэтанола производится из кукурузы (США) и сахарного тростника (Бразилия). Сырьём для производства биоэтанола также могут быть различные с/х культуры с большим содержанием крахмала или сахара: маниок, картофель, сахарная свекла, батат, сорго, ячмень и т. д.

Большим потенциалом обладает маниок. Маниоку в больших количествах производят Китай, Нигерия, Таиланд. Себестоимость производства биоэтанола из маниоки в Таиланде — около $35 за баррель нефтяного эквивалента.

Лучшим климатом для производства сахарного тростника обладает Перу, страны Карибского бассейна. В больших количествах сахарный тростник могут также производить Индонезия и некоторые африканские страны, например, Мозамбик.

Этанол можно производить в больших количествах из целлюлозы. Сырьём могут быть различные отходы сельского и лесного хозяйства: пшеничная солома, рисовая солома, багасса сахарного тростника, древесные опилки и т. д.

Сырьём для производства биоэтанола может служить борщевик Сосновского. С гектара борщевика, ориентировочно, можно получить до 25 тыс. литров биоэтанола. Для сравнения, сахарный тростник и сахарная свекла позволяют производить соответственно 4550 и 5060 литров биоэтанола с гектара. [1]

Читать еще:  Что будет если перелить масло в двигатель автомобиля

Методы производства [ править | править код ]

Брожение [ править | править код ]

Известный с давних времён способ получения этанола — спиртовое брожение органических продуктов, содержащих углеводы (виноград, плоды и т. п.) под действием ферментов дрожжей и бактерий. Аналогично выглядит переработка крахмала, картофеля, риса, кукурузы, и проч. Реакция эта довольно сложна, её схему можно выразить уравнением:

В результате брожения получается раствор, содержащий не более 15 % этанола, так как в более концентрированных растворах дрожжи обычно гибнут. Полученный таким образом этанол нуждается в очистке и концентрировании, обычно путём дистилляции.

Промышленное производство спирта из биологического сырья [ править | править код ]

Современная промышленная технология получения спирта этилового из пищевого сырья включает следующие стадии:

  • подготовка и измельчение крахмалистого сырья — зерна (прежде всего — ржи, пшеницы), картофеля, кукурузы и т. п.;
  • ферментация; на подавляющем большинстве спиртовых производств мира ферментативное расщепление крахмала до спирта при помощи дрожжей оставлено — для этих целей применяются рекомбинантные препараты альфа-амилазы, полученные биоинженерным путём — глюкоамилаза, амилосубтилин;
  • брагоректификация — осуществляется на разгонных колоннах.

Отходами бродильного производства являются барда и сивушные масла. Барда используется для производства кормов.

Крупнейшие производители биоэтанола в США компании «Archer Daniels Midland» и «Cargill».

Гидролизное производство [ править | править код ]

В промышленных масштабах этиловый спирт получают из сырья, содержащего целлюлозу (древесина, солома), которую предварительно гидролизуют. Образовавшуюся при этом смесь пентоз и гексоз подвергают спиртовому брожению. В странах Западной Европы и Америки эта технология не получила распространения, но в СССР (ныне в России) существовала развитая промышленность кормовых гидролизных дрожжей и гидролизного этанола.

Этанол как топливо [ править | править код ]

На 2008 год доля этанола в мировом потреблении моторного топлива составила 5,4 %. В том же году 89 % мирового производства этанола приходились на долю США и Бразилии. [2]

Этанол является менее «энергоплотным» источником энергии, чем бензин (это касается только смесей с высоким содержанием этанола, см. ниже «Энергоэффективность этанола»); пробег машин работающих на Е85 (смесь 85 % этанола и 15 % бензина; буква «Е» — от английского Ethanol) на единицу объёма топлива составляет примерно 75 % от пробега стандартных машин. Обычные автомобильные ДВС не могут работать на Е85, хотя прекрасно работают на Е10. На «настоящем» этаноле могут работать только т. н. машины «Flex-Fuel» (автомобиль с многотопливным двигателем). Эти автомобили также могут работать на обычном бензине (небольшая добавка этанола всё же требуется) или на произвольной смеси того и другого. Бразилия является лидером в производстве и использовании биоэтанола из сахарного тростника в качестве топлива. Автозаправки в Бразилии предлагают на выбор либо Е20 (иногда Е25) под видом обычного бензина, либо «acool» Е100, азеотроп этанола (96 % С2Н5ОН и 4 % (по весу) воды). Пользуясь тем, что этанол дешевле бензина, недобросовестные заправщики разбавляют Е20 азеотропом, так что его концентрация может негласно доходить до 40 %. Переделать обычную машину в «Flex-fuel» можно, но экономически нецелесообразно.

Критики производства биоэтанола заявляют, что для производства биоэтанола под плантации тростника часто вырубаются тропические леса. Хотя плантации сахарного тростника не являются первоочередной целью лесорубов. Тропические леса вырубаются нелегально ради древесины. Если нелегальные производители древесины вырубают участок леса, то после их ухода участок занимают фермеры для выпаса скота. Через 3-4 года выпас скота на этом участке прекращается, а участок занимают фермеры для производства сои и других культур.

Производство этанола из кукурузы в США в 5-6 раз менее эффективно по сравнению с его производством на основе сахарного тростника в Бразилии. В последнее время в южных штатах США начинается производство целлюлозного этанола, для чего проводятся посевы сладкого сорго [2] .

В России [ править | править код ]

В 2004 году в РФ был принят ГОСТ Р 52201-2004 на спиртосодержащие моторные топлива («бензанолы») с содержанием этанола 5–10%. С 2006 года вступили в действие изменения к Закону «О государственном регулировании производства и оборота этилового спирта, алкогольной и спиртосодержащей продукции» и к главе «Акцизы» Налогового кодекса РФ. В результате изменений, бензин, содержащий более 1,5 % спирта, признается спиртосодержащей продукцией со всеми вытекающими последствиями: его изготовление и реализация подлежат лицензированию и специальному контролю со стороны налоговых органов. [3]

В 2018 году был принят закон, регулирующий производство и оборот биоэтанола и призванный вывести производство и оборот автомобильного бензина, произведенного с добавлением этилового спирта, из-под действия закона 2006 года о госрегулировании производства и оборота этилового спирта. [4]

Топливные смеси этанола [ править | править код ]

Е5, Е7, Е10 — смеси с низким содержанием этанола (5, 7 и 10 весовых процентов, соответственно), наиболее распространённые в наши дни. В этих случаях добавка этанола не только экономит бензин путём его замещения, но и позволяет удалить вредную оксигенирирующую добавку МТБЭ.

Е85 — смесь 85 % этанола и 15 % бензина. Стандартное топливо для т. н. «Flex-Fuel» машин, распространённых в основном в Бразилии и США и в меньшей степени — в других странах. Из-за более низкой энергоплотности продаётся дешевле, чем бензин.

ЕD95 — смесь 95 % этанола и 5 % топливной присадки. Компания «Scania» начала разрабатывать дизельный двигатель для автобуса, работающий на 95 % этаноле, в середине 80-х годов. Создана программа испытаний городских автобусов с двигателями, работающими на 95 % этаноле — «BEST» («BioEthanol for Sustainable Transport»).

Е100 — формально 100 % этанол, однако в силу того, что этанол гигроскопичен, его получение и использование без остаточной концентрации воды невыгодно. Поэтому в большинстве случаев под Е100 подразумевают стандартную азеотропную смесь этанола (96 % С2Н5ОН и 4 % воды (по весу); 96,5 % и 3,5 % в объёмных процентах). Путём обычной дистилляции невозможно получить более высокую концентрацию этанола.

Подробно номенклатура смесей этанола и бензина, используемых в качестве топлива в разных странах и машинах, описана в английской статье Википедии Топливные смеси этанола.

Энергоэффективность этанола [ править | править код ]

В декабре 2007 года Университет Северной Дакоты и Центр Автомобильных Исследований Миннесоты (MnCAR) опубликовали результаты исследования энергоэффективности применения биоэтанола в автомобильном транспорте [5] . В исследовании принимали участие как обычные автомобили, так и автомобили с «Flex-fuel» двигателями. Исследовали смеси от 2 % до 85 % содержания этанола в бензине.

Для обычных автомобилей оптимальной оказалась смесь Е30. Потребление топлива снизилось на 1 % в сравнении с бензином. Результат получен на автомобилях «Toyota Camry» и «Ford Fusion».

Для «flex-fuel» автомобилей оптимальной оказалась смесь Е20. Потребление топлива снизилось на 15 % в сравнении с бензином. Результат получен на «flex-fuel» модели «Chevrolet Impala».

Экономическая эффективность производства этанола [ править | править код ]

В 2006 г. в своём отчёте Департамент сельского хозяйства США (USDA) сообщил, что себестоимость производства биоэтанола в США составляет около 0,3$ за литр, в Бразилии — 0,19-0,2 $, в Европе — 0,5$ [6] . В начале 2008 года рыночная цена 1 литра этанола была: в США — 0,43 $ (бензин — 0,55 $), в Бразилии — 0,4 $, в Европе — 0,72 $ (бензин — 1,5 $) [7] .

В Бразилии багасса сахарного тростника используется в качестве топлива на электростанциях. Это позволяет увеличить топливный баланс этанола, производимого из сахарного тростника, до 8.

Экологические аспекты применения этанола в качестве топлива [ править | править код ]

Использование биоэтанола в качестве топлива позволяет снизить выбросы диоксида углерода, являющегося парниковым газом. Сокращение выбросов диоксида углерода при использовании биоэтанола зависит от используемого растительного сырья, климатической зоны и накладных расходов на его выращивание, транспорт и переработку, поскольку в этих процессах используется ископаемое топливо (агротехнические работы, сушка зерна при закладке на хранение, производство удобрений для восстановления плодородия почв, ректификация спирта и переработка отходов). Снижение выбросов CO2 при производстве этанола из зерна, по состоянию на 2007 г., в США составляло, в среднем, 19 %, предполагается, что при модернизации спиртового производства и переводе его исключительно на природный газ возможно снижение выбросов углекислого газа на 28-32 %. Максимальное снижение выбросов CO2 может быть достигнуто при производстве этанола из целлюлозосодержащих отходов (например, отходов лесной промышленности, 52 %) в качестве как источников целлюлозы, так и топлива в спиртовом производстве; теоретический максимум снижения выбросов — 82 % — может быть достигнут при производстве этанола из целлюлозной биомассы проса Panicum virgatum, однако такие производства в настоящее время (2011 г.) отсутствуют [8] .

Главной проблемой производства биоэтанола из товарной сельскохозяйственной продукции, в первую очередь из зерна, является сокращение доли земель, занятых под производство кормовых и пищевых культур и, как следствие, рост цен на продовольствие. Так, по оценкам бюджетного комитета Конгресса США, вклад роста использования зерна для производства этанола в повышении цен на продовольствие в 2008 г. составил 35 % [9] .

Содержащийся в этаноле кислород позволяет более полно сжигать углеводороды топлива. 10 % содержание этанола в бензине позволяет сократить выхлопы аэрозольных частиц до 50 %, выбросы СО — на 30 %.

В 2006 году применение этанола в США позволило сократить выбросы около 8 млн тонн парниковых газов (в CO2 эквиваленте), что примерно равно годовым выхлопам 1,21 млн автомобилей.

Автомобили, использующие биоэтанол в качестве топлива [ править | править код ]

  • «Микроджоуль»
  • Koenigsegg CCXR
  • en:Saab Aero-X
  • Saab 9-3 (в комплектации с двигателем «BioPower»)
  • Ford Focus и Ford C-MAX Flexifuel
  • Zenvo ST1 (Zenvo)
  • Bentley continental Supersports

В начале 2007 г. 15 % автомобилей в Бразилии имели flex-fuel двигатели.

В 2007 году в Бразилии было продано 2 миллиона новых биотопливных автомобилей, что составляет 85,6 % от рынка новых автомобилей Бразилии. За 2003 год в Бразилии было продано 48 тыс. биотопливных автомобилей, что составляло 4 % автомобильного рынка.

Последнее время широкое распространение получили двигатели «Flexifuel» от компании «Ford». В 2007 году в Европе было продано около 17500 автомобилей «Flexifuel».

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector