Autoservice-mekona.ru

Автомобильный журнал
15 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Электронное устройство запуска трехфазных двигателей в однофазной сети

Статьи

Подключение трехфазного электродвигателя к однофазной сети 28.07.2017 13:44

Асинхронные электродвигатели получили наиболее широкое применение в современных электрических приемниках и являются самым распространенным видом электрических машин переменного тока.

Наибольшее применение получили трехфазные асинхронные электродвигатели.

Асинхронный двигатель состоит из двух основных частей: неподвижного статора и подвижного ротора.

В данной статье мы рассматриваем асинхронный трехфазный двигатель с короткозамкнутым ротором, имеющий наиболее широкое применение.

Такое название двигатель получил одноименно от своего ротора, который является короткозамкнутым, имеющего короткозамкнутые кольца.

Вид короткозамкнутого ротора представлен на рисунке 1 ниже.

Концы обмоток фаз статора выводят на зажимы коробки выводов (представлено на фото ниже).

Рис. 2 Коробка выводов асинхронного двигателя

Обычно асинхронные двигатели предназначены для включения в трехфазную сеть на два разных напряжения, отличающие в √3 раз. Например, электродвигатель рассчитан для включения в сеть напряжением 220/380 В.

То есть, если в сети линейное напряжение 380 В, то обмотку статора следует соединить звездой, а если напряжение линейное 220 В, то треугольником. Во всех случаях напряжение на обмотке каждой из фаз будет 220 В.

Нашей задачей будет подключить трехфазный электродвигатель к однофазной сети 220 В.

Как видно на рисунке 2, выводы в клемной коробке расположены таким образом, чтобы было удобно по средствам установки перемычек выполнить переключение обмоток.

Схема переключения обмоток приведена на рисунке ниже.

Рис. 3 Схемы переключения обмоток «треугольник» и «звезда»

Стоит обратить внимание на факт исполнения двигателей без возможности переключения концов обмоток. В данном случае, электродвигатель может быть включен в сеть только на одно напряжение. Проверить это можно, прочитав бирку на корпусе электродвигателя.

Таким образом, в случае когда в клемной коробке электродвигателя есть возможность переключения обмоток с «звезды» 380 В в «треугольник» 220 В, применима схема питания трехфазного асинхронного электродвигателя от однофазной сети через преобразователь частоты.

То есть, подав одну фазу электропитания 220 В на вход преобразователя частоты, на выходе из преобразователя получим три фазы 220 В. Остается только переключить обмотку статора электродвигателя с «звезды» в «треугольник».

Схема подключения трехфазного асинхронного электродвигателя через частотный преобразователь от однофазной сети 220 В приведена ниже.

Рис. 4 Схема подключения трехфазного двигателя к преобразователю частоты, запитанному от однофазной сети

Описанный выше способ позволяет подключить трехфазный асинхронный электродвигатель к однофазной сети, используя частотный преобразователь.

В заключении следует также отметить, что выбирая, частотный преобразователь, необходимо иметь в виду, что в данной схеме подойдет преобразователь с однофазным питанием и выходом на три фазы, как показано на рисунке ниже.

Рисунок 5 – Маркировка преобразователя частоты с питанием 220 В и выходом на три фазы

Таким образом, существующие технологии, позволяют в штатном порядке с помощью преобразователя частоты подключить асинхронный трехфазный электродвигатель мощностью до 4 кВт к однофазной сети 220 В.

Подключение трехфазного двигателя к однофазной сети без потери мощности

Как известно, при включении трёхфазного асинхронного двигателя в однофазную сеть, по распространенным конденсаторным схемам: «треугольник», или «звезда», мощность двигателя используется только наполовину (в зависимости от применяемого двигателя).

Кроме того, затруднён запуск двигателя под нагрузкой.

В предлагаемой статье описан метод подключения двигателя без потери мощности.

В различных любительских электромеханических станках и приспособлениях чаще всего используются трехфазные асинхронные двигатели с короткозамкнутым ротором. К сожалению, трехфазная сеть в быту — явление крайне редкое, поэтому для их питания от обычной электрической сети любители применяют фазосдвигающий конденсатор, что не позволяет в полном объеме реализовать мощность и пусковые характеристики двигателя. Существующие же тринисторные «фазосдвигающие» устройства еще в большей степени снижают мощность на валу двигателей.

Вариант схемы устройства запуска трехфазного электродвигателя без потери мощности приведен на рис. 1.

Обмотки двигателя 220/380 В соединены треугольником, а конденсатор С1 включен, как обычно, параллельно одной из них. Конденсатору «помогает» дроссель L1, включенный параллельно другой обмотке. При определенном соотношении емкости конденсатора С1, индуктивности дросселя L1 и мощности нагрузки можно получить сдвиг фаз между напряжениями на трех ветвях нагрузки, равный точно 120°.

На рис. 2 приведена векторная диаграмма напряжений для устройства, представленного на рис. 1, при чисто активной нагрузке R в каждой ветви. Линейный ток Iл в векторном виде равен разности токов Iз и Ia, а по абсолютному значению соответствует величине Iф√3, где Iф=I1=I2=I3=Uл/R — фазный ток нагрузки, Uл=U1=U2=U3=220 В — линейное напряжение сети.

К конденсатору С1 приложено напряжение Uc1=U2, ток через него равен Ic1 и по фазе опережает напряжение на 90°.

Аналогично к дросселю L1 приложено напряжение UL1=U3, ток через него IL1 отстает от напряжения на 90°.

При равенстве абсолютных величин токов Ic1 и IL1 их векторная разность при правильном выборе емкости и индуктивности может быть равной Iл.

Сдвиг фаз между токами Ic1 и IL1 составляет 60°, поэтому треугольник из векторов Iл, Iс1 и IL1 — равносторонний, а их абсолютная величина составляет Iс1=IL1=Iл=Iф√3. В свою очередь, фазный ток нагрузки Iф=Р/ЗUL, где Р — суммарная мощность нагрузки.

Иными словами, если емкость конденсатора С1 и индуктивность дросселя L1 выбрать такими, чтобы при поступлении на них напряжения 220 В ток через них был бы равен Ic1=IL1=P/(√3⋅Uл)=P/380, показанная на рис. 1 цепь L1C1 обеспечит на нагрузке трехфазное напряжение с точным соблюдением сдвига фаз.

Таблица 1
P, ВтIC1=IL1, AC1, мкФL1, Гн
1000.263.82.66
2000.537.61.33
3000.7911.40.89
4001.0515.20.67
5001.3219.00.53
6001.5822.90.44
7001.8426.70.38
8002.1130.50.33
9002.3734.30.30
10002.6338.10.27
11002.8941.90.24
12003.1645.70.22
13003.4249.50.20
14003.6853.30.19
15003.9557.10.18

В табл. 1 приведены значения тока Ic1=IL1. емкости конденсатора С1 и индуктивности дросселя L1 для различных величин полной мощности чисто активной нагрузки.

Реальная нагрузка в виде электродвигателя имеет значительную индуктивную составляющую. В результате линейный ток отстает по фазе от тока активной нагрузки на некоторый угол ф порядка 20. 40°.

Читать еще:  Через сколько меняют масло в двигателе на джили

На шильдиках электродвигателей обычно указывают не угол, а его косинус — широко известный cosφ, равный отношению активной составляющей линейного тока к его полному значению.

Индуктивную составляющую тока, протекающего через нагрузку устройства, показанного на рис. 1, можно представить в виде токов, проходящих через некоторые катушки индуктивности Lн, подключенные параллельно активным сопротивлениям нагрузки (рис. 3,а), или, что эквивалентно, параллельно С1, L1 и сетевым проводам.

Из рис. 3,б видно, что поскольку ток через индуктивность противофазен току через емкость, катушки индуктивности LH уменьшают ток через емкостную ветвь фазосдвигающей цепи и увеличивают через индуктивную. Поэтому для сохранения фазы напряжения на выходе фазосдвигающей цепи ток через конденсатор С1 необходимо увеличить и через катушку уменьшить

Векторная диаграмма для нагрузки с индуктивной составляющей усложняется. Ее фрагмент, позволяющий произвести необходимые расчеты, приведен на рис. 4.

Полный линейный ток Iл разложен здесь на две составляющие: активную Iлcosφ и реактивную Iлsinφ.

В результате решения системы уравнений для определения необходимых значений токов через конденсатор С1 и катушку L1:

IC1sin30° + IL1sin30° = Iлcosφ, IC1cos30° — IL1cos30° = Iлsinφ,

получаем следующие значения этих токов:

IC1 = 2/√3⋅Iлsin(φ+60°), IL1 = 2/√3⋅Iлcos(φ+30°).

При чисто активной нагрузке (φ=0) формулы дают ранее полученный результат Ic1=IL1=Iл.

На рис. 5 приведены зависимости отношений токов Ic1 и IL1 к Iл от cosφ, рассчитанные по этим формулам Для (cosφ = √3/2 = 0,87) ток конденсатора С1 максимален и равен 2/√3Iл = 1.15Iл, а ток дросселя L1 вдвое меньше.

Этими же соотношениями с хорошей степенью точности можно пользоваться для типовых значений cosφ, равных 0,85. 0,9.

Таблица 2
P, ВтIC1, AIL1, AC1, мкФL1, Гн
1000.350.185.13.99
2000.700.3510.22.00
3001.050.5315.21.33
4001.400.7020.31.00
5001.750.8825.40.80
6002.111.0530.50.67
7002.461.2335.60.57
8002.811.4040.60.50
9003.161.5845.70.44
10003.511.7550.80.40
11003.861.9355.90.36
12004.212.1161.00.33
13004.562.2866.00.31
14004.912.4671.10.29
15005.262.6376.20.27

В табл. 2 приведены значения токов IC1, IL1, протекающих через конденсатор С1 и дроссель L1 при различных величинах полной мощности нагрузки, имеющей указанное выше значение cosφ = √3/2.

Для такой фазосдвигающей цепи используют конденсаторы МБГО, МБГП, МБГТ, К42-4 на рабочее напряжение не менее 600 В или МБГЧ, К42-19 на напряжение не менее 250 В.

Дроссель проще всего изготовить из трансформатора питания стержневой конструкции от старого лампового телевизора. Ток холостого хода первичной обмотки такого трансформатора при напряжении 220 В обычно не превышает 100 мА и имеет нелинейную зависимость от приложенного напряжения.

Если же в магнитопровод ввести зазор порядка 0,2. 1 мм, ток существенно возрастет, а зависимость его от напряжения станет линейной.

Сетевые обмотки трансформаторов ТС могут быть соединены так, что номинальное напряжение на них составит 220 В (перемычка между выводами 2 и 2′), 237 В (перемычка между выводами 2 и 3′) или 254 В (перемычка между выводами 3 и 3′). Сетевое напряжение чаще всего подают на выводы 1 и 1′. В зависимости от вида соединения меняются индуктивность и ток обмотки.

В табл. 3 приведены значения тока в первичной обмотке трансформатора ТС-200-2 при подаче на нее напряжения 220 В при различных зазорах в магнитопроводе и разном включении секций обмоток.

Сопоставление данных табл. 3 и 2 позволяет сделать вывод, что указанный трансформатор можно установить в фазосдвигающую цепь двигателя с мощностью примерно от 300 до 800 Вт и, подбирая зазор и схему включения обмоток, получить необходимую величину тока.

Индуктивность изменяется также в зависимости от синфазного или противофазного соединения сетевой и низковольтных (например, накальных) обмоток трансформатора.

Максимальный ток может несколько превышать номинальный ток в рабочем режиме. В этом случае для облегчения теплового режима целесообразно снять с трансформатора все вторичные обмотки, часть низковольтных обмоток можно использовать для питания цепей автоматики устройства, в котором работает электродвигатель.

Таблица 3
Зазор в
магнитопроводе, мм
Ток в сетевой обмотке, A,
при соединении выводов на напряжение, В
220237254
0.20.630.540.46
0.51.261.060.93
12.051.75

В табл. 4 приведены номинальные величины токов первичных обмоток трансформаторов различных телевизоров и ориентировочные значения мощности двигателя, с которыми их целесообразно использовать фазосдвигающую LC-цепь следует рассчитывать для максимально возможной нагрузки электродвигателя.

Таблица 4
ТрансформаторНоминальный
ток, A
Мощность
двигателя, Вт
ТС-360М1.8600. 1500
ТС-330К-11.6500. 1350
СТ-3201.6500. 1350
СТ-3101.5470. 1250
ТСА-270-1,
ТСА-270-2,
ТСА-270-3
1.25400. 1250
ТС-250,
ТС-250-1,
ТС-250-2,
ТС-250-2М,
ТС-250-2П
1.1350. 900
ТС-200К1330. 850
ТС-200-20.95300. 800
ТС-180,
ТС-180-2,
ТС-180-4,
ТС-180-2В
0.87275. 700

При меньшей нагрузке необходимый сдвиг фаз уже не будет выдерживаться, но пусковые характеристики по сравнению с использованием одного конденсатора улучшатся.

Экспериментальная проверка проводилась как с чисто активной нагрузкой, так и с электродвигателем.

Функции активной нагрузки выполняли по две параллельно соединенных лампы накаливания мощностью 60 и 75 Вт, включенные в каждую нагрузочную цепь устройства (см рис. 1), что соответствовало общей мощности 400 Вт В соответствии с табл. 1 емкость конденсатора С1 составляла 15 мкф Зазор в магнитопроводе трансформатора ТС-200-2 (0,5 мм) и схема соединения обмоток (на 237 В) были выбраны из соображений обеспечения необходимого тока 1,05 А.

Измеренные на нагрузочных цепях напряжения U1, U2, U3 отличались друг от друга на 2. 3 В, что подтверждало высокую симметрию трехфазного напряжения.

Эксперименты проводились также с трехфазным асинхронным двигателем с короткозамкнутым ротором АОЛ22-43Ф мощностью 400 Вт. Он работал с конденсатором С1 емкостью 20 мкф (кстати, такой же, как и при работе двигателя только с одним фазосдвигающим конденсатором) и с трансформатором, зазор и соединение обмоток которого выбраны из условия получения тока 0,7 А.

В результате удалось быстро запустить двигатель без пускового конденсатора и заметно увеличить крутящий момент, ощущаемый при торможении шкива на валу двигателя.

Читать еще:  Что такое датчик аварийного давления масла двигателя уаз

К сожалению, провести более объективную проверку затруднительно, поскольку в любительских условиях практически невозможно обеспечить нормированную механическую нагрузку на двигатель.

Следует помнить, что фазосдвигающая цепь — это последовательный колебательный контур, настроенный на частоту 50 Гц (для варианта чисто активной нагрузки), и без нагрузки подключать к сети эту цепь нельзя.

ООО «КомплектИнжинирингТехнологии»

Тел.: (843)5134201,+7(917)394-61-53 отправить запрос : kit.kazan@bk.ru

  • Главная
  • Продукция
  • Новости
  • Услуги
  • Статьи
  • Контакты
  • Проекты
  • Поставка оборудования и пусконаладка
    • Автоматика безопасности конвейеров
    • Средства промышленной безопасности
    • Шахтная автоматика
    • Станции управления электродвигателями
    • Частотные преобразователи, УПП, дроссели, фильтры
    • Средства автоматизации
    • Регулирующая арматура и детали трубопроводов
    • Системы очистки воздуха для промышленности
    • Коммутационная аппаратура
    • Оборудование КИПиА
      • Манометры
      • Измерение температуры
      • Регулирование температуры
      • Бесконтактные датчики и выключатели
      • Приборы измерения давления
      • Приборы измерения расхода
      • Приборы измерения уровня
      • Шкафы обогрева КИПиА и термочехлы
  • Индустриальные масла и промышленная химия
  • аппараты и технологические установки

Трехфазный двигатель в однофазной сети

3-фазный двигатель в однофазной сети

Трехфазные асинхронные электродвигатели не требуют дополнительных устройств для запуска и работы. Нужны лишь контакторы или иные устройства подачи трехфазного напряжения. Однако при включении двигателя в однофазную сеть используются другие способы запуска.

Фазосдвигающий конденсатор

Существует простой способ, позволяющий запитать трехфазный двигатель от бытовой однофазной сети с напряжением 220 В. Трехфазное напряжение получают путем сдвига фаз с помощью фазосдвигающего конденсатора. Делается это так.

В однофазной сети имеются два провода (фаза и ноль), между которыми существует сдвиг фаз 180 градусов. Для включения трехфазного двигателя нужны три проводника, напряжения на которых должны иметь сдвиг фаз 120 градусов. Поэтому, если подключить один из выводов двигателя к фазному проводнику напрямую, а другой – через фазосдвигающий конденсатор, то в совокупности с нулевым проводником и обмотками такая система будет трехфазной. Другими словами, будет обеспечен нужный режим питания.

Для расчета номинала фазосдвигающего конденсатора можно воспользоваться приближенной формулой:

где k – коэффициент, равный 4800 для схемы подключения «треугольник», 2800 – для «звезды», I – номинальный ток двигателя (указывается на шильдике), U – фазное напряжение (в нашем случае – 220 В).

Рабочее напряжение конденсатора следует выбирать не менее 400 В, при этом желательно использовать специальные конденсаторы для электродвигателей, на частоту 50 – 60 Гц.

Пусковой конденсатор

Приведенная выше формула справедлива для номинального тока. Но двигатель работает не только на номинале. При пуске его ток может превышать номинальное значение в 5-7 раз, а при работе – быть ниже в 2-3 раза (холостой ход). В результате момент на валу при включении будет мал, и двигатель будет разгоняться очень долго либо вообще не сможет запуститься. Поэтому для запуска используют дополнительный пусковой конденсатор, который подключают к рабочему (фазосдвигающему) на время разгона (3-5 секунд). Обычно емкость пускового конденсатора выбирают в 2-5 раз больше, в зависимости от требуемого момента при пуске и времени разгона.

Для подключения пускового конденсатора используют специальные ручные пускатели, в которых время пуска равно времени нажатия на двухпозиционную кнопку «Пуск». Пока оператор держит «Пуск» в позиции без фиксации, подключаются рабочий и пусковой конденсаторы. Как только оператор отпускает кнопку, она переходит в фиксированную позицию, и в схеме остается лишь рабочий конденсатор. Остановка двигателя производится кнопкой «Стоп». Кроме ручных пускателей могут использоваться релейные и электронные схемы.

Данный способ не применяется на практике для двигателей более 2,2 кВт из-за низкого КПД и большой емкости конденсаторов.

Двигатель с пусковой обмоткой

Конденсатор также используется в случае, когда двигатель имеет две обмотки – рабочую и пусковую. Рабочая обмотка подключается к питающему однофазному напряжению (220 В) напрямую. Пусковая обмотка имеет меньший ток и подключается через фазосдвигающей конденсатор. Совместно обе обмотки имеют такую конфигурацию, что формируют внутри статора вращающееся магнитное поле.

Емкость фазосдвигающего конденсатора обычно указывается на шильдике двигателя. На время пуска и разгона может применяться дополнительный конденсатор. Такой двигатель называют конденсаторным, и он предназначен для работы только в однофазной сети.

Трехфазный двигатель в однофазной сети

Двигатели с тремя фазами необходимы для различных самоделок: циркулярок, деревообрабатывающих, заточных и сверлильных станков. Проблемы с ним могут возникнуть, если сеть однофазная. В таком случае, существует несколько способов подключения двигателя к сети.

Способ 1. Подключение третьей обмотки через фазосдвигающий конденсатор

Среди различных способов запуска трехфазных двигателей в однофазных сетях, самый простой и эффективный — с подключением третьей обмотки через фазосдвигающий конденсатор. Учитывая, что конденсатор сдвигает фазу третьей обмотки на 90°С, а между первой и второй фазами сдвиг незначителен, электромотор теряет мощность примерно на 40…50% при включении обмоток по схеме треугольника.

Чтобы электромотор с конденсаторным пуском работал нормально, емкость конденсатора должна меняться в зависимости от числа оборотов. На практике это условие выполнить трудно, двигателем обычно управляют двухступенчато: сначала включают с пусковым конденсатором (ввиду больших пусковых токов), а после разгона его отсоединяют, оставляя только рабочий (рис.1).

При нажатии па кнопку SB1 (можно использовать кнопку от стиральной машины — пускатель ПНВС-10 УХЛ2) электродвигатель М начинает разгоняться, а когда он наберет обороты, кнопку отпускают. SB1.2 размыкается, a SB1.1 и SB1.3 остаются замкнутыми. Их размыкают для остановки электродвигателя. Если SB 1.2 в кнопке не отходит, под него следует подложить шайбу так, чтобы он отходил. При соединении обмоток двигателя по схеме «треугольник» емкость рабочего конденсатора С2 определяется по формуле:

С2=4800 I/U
где I —ток, потребляемый мотором, А;
U — напряжение сети, В.
Ток, потребляемый электродвигателем, можно измерить амперметром или же рассчитать по формуле:

где Р — мощность двигателя, Вт;
U — напряжение сети, В;
n— КПД;
cosψ — коэффициент мощности. Емкость пускового конденсатора С1 выбирают в 2…2,5 раза больше рабочего при большой нагрузке на вал, а их допустимые напряжения должны превышать в 1,5 раза напряжение сети. Лучше всего применять конденсаторы марки МГБО, МБГП, МБГЧ с рабочим на­пряжением 500 В и выше. Пусковые конденсаторы необходимо зашунтировать резистором R1 сопротивлением 200…500 кОм, через который «стекает» оставшийся электрический заряд.

Реверсирование электромотора осуществляется путем переключения фазы на его обмотке тумблером SA1 (рис. 1) типа ТВ1…4 и т.п.

Читать еще:  Давление масла в двигателе 2112 16 клапанов норма

При работе в режиме холостого хода по питаемой через конденсаторы обмотке протекает ток, па 20…40% превышающий поминальный. Поэтому если электромотор будет часто использоваться в недогруженном режиме или вхолостую, емкость конденсатора С2 следует уменьшить. Например, для включения двигателя мощностью 1,5 кВт можно использовать в качестве рабочего конденсатор емкостью 100 мкФ, пускового — 60 мкФ. Значения емкостей рабочих и пусковых конденсаторов в зависимости от мощности двигателя приведены в таблице.

Способ 2. Запуск двигателя с использованием оксидных конденсаторов

Если нет возможности приобрести бумажные конденсаторы, можно использовать оксидные (электролитические) в качестве пусковых» На рис.2 приведена схема замены бумажных конденсаторов на электролитические. Положительная полуволна переменного тока проходит через цепочку VD1C1, а отрицательная — через VD2C2, поэтому электролиты можно использовать с меньшим допустимым напряжением, чем для обычных бумажных конденсаторов. Так, если для бумажных конденсаторов необходимо напряжение 400 В и выше, то для электролита достаточно 300…350 В, потому что он пропускает только одну полуволну переменного тока, и следовательно, к нему прикладывается лишь половина действующего напряжения, а для надежности он должен выдержать амплитудное напряжение однофазной сети, т.е. примерно 300 В. Их расчет аналогичен расчету бумажных.

Схема включения такого двигателя с помощью электролитических конденсаторов приведена на рис.3. Подобрать нужное значение емкости бумажных и оксидных конденсаторов проще всего измерив, ток в точках а, в, с — токи должны быть равны при оптимальной нагрузке на вал двигателя. Диоды VD1, VD2 выбираются с обратным напряжением не менее 300 В и 1пр. мах=10А. При большей мощности двигателя диоды устанавливаются на теплоотводы по два в плече, иначе может произойти пробой диодов и через оксидный конденсатор потечет переменный ток, в результате чего спустя некоторое время электролит может нагреться и разорваться. Электролитические конденсаторы в качестве рабочих применять нежелательно, поскольку длительное протекание через них больших токов приводит к их разогреванию и взрыву. Их лучше всего использовать в качестве пусковых.

Способ 3. Подключение пусковых конденсаторов с помощью токового реле

Если трехфазный электродвигатель используется при динамических (больших) нагрузках на вал, можно использовать схему подключения пусковых конденсаторов с помощью токового реле, которое позволяет в момент больших нагрузок на вал автоматически подключать и отключать пусковые конденсаторы (рис.3).

При подключении обмоток по схеме, приведенной на рис.4, мощность электродвигателя составляет 75% от номинальной мощности в трехфазном режиме, т.е. потери составляют примерно 25%, поскольку обмотки А и В включены противофазно на полное напряжение 220 В, а напряжение вращения определяется включением обмотки С. Фазирование обмоток показано точками.

Способ 4. Резисторно-индуктивноемкостные преобразователи сети

Более практичны и удобны в работе с такими двигателями резисторно-индуктивноемкостные преобразователи сети с одной фазой 220 В в трехфазную, с токами в фазах до 4А и сдвигом напряжений в фазах около 120°. Такие устройства универсальны, монтируются в жес­тяном корпусе и позволяют под­ключать трехфазные электродвигатели мощностью до 2,5 кВт в однофазную сеть 220 В практически без потери мощности.

В преобразователе используется дроссель с воздушным зазором. Устройство дросселя показано на рис.6. При правильном подборе R, С и соотношения витков в секциях обмотки дросселя такой преобразователь обеспечивает нормальную длительную работу электродвигателей независимо от их характеристик и степени нагрузки на вал. Вместо индуктивности дано индуктивное сопротивление XL, так как его проще измерить: обмотка дросселя крайними выводами через амперметр подключается к напряжению 100…220 В частотой 50 Гц параллельно с вольтметром. Индуктивное сопротивление (активным можно пренебречь) практически определяется как отношение напряжения в вольтах к току в амперах XL=U/J.

Конденсатор С1 должен выдержи­вать напряжение не менее 250 В, С2 — не менее 350 В. Если использовать конденсаторы КБГ, МБГ-4, то напряжение соответствует номиналу, указанному на маркировке, а конденсаторы МБГП, МБГО при включении в цепь переменного тока должны иметь примерно двукратный запас по напряжению. Резистор R1 должен быть рассчитан на ток до ЗА, т.е. на мощность около 700 Вт (наматывается никелево-хромовой проволокой диаметром 1,3…1,5 мм на фарфоровой трубке с передвигающейся скобой, позволяющей получать нужное сопротивление для разных мощностей двигателя). Резистор должен быть защищен от перегрева, огражден от других элементов, токоведущих частей, от прикосновения людей. Металлическое шасси корпуса необходимо заземлить.

Сечение магнитопровода дросселя S=16…18cm2, диаметр провода d=l,3…1,5 мм, общее число витков W=600…700. Форма магнитопровода и марка стали — любые, главное — предусмотреть воздушный зазор (а следовательно, возможность менять индуктивное сопротивление), которое устанавливается винтами (рис.6). Для устранения сильного дребезжания дросселя между Ш-об-разными половинами магнитопровода прокладывается деревянный брусок и зажимается винтами. В качестве дросселя подходят силовые трансформаторы от ламповых цветных телевизоров мощностью 270…450 Вт. Вся обмотка дросселя выполняется в виде одной катушки с тремя секциями и четырьмя выводами. Если использовать сердечник с постоянным воздушным зазором, придется изготовить пробную катушку без промежуточных отводов, собрать дроссель с примерным зазором, включить в сеть и измерить XL. Затем для подгонки полученного значения к требуемому. XL нужно отмотать или домотать несколько витков. Выяснив необходимое число витков, мотают необходимую катушку, разделив каркас на секции в отношении W1:W2:W3=1:1:2. Так, если общее число витков равно 600, то Wl =W2= 150, a W3=300. Чтобы увеличить выходную мощность преобразователя и избежать при этом несимметрии напряжений, нужно изменить значения XL, Rl, Cl, С2, которые рассчитываются из тех соображений, что токи в фазах А, В и С должны быть равны при номинальной нагрузке на вал двигателя. В режимах недогрузки двигателя несимметрия напряжений фаз не опасна, если наибольший из токов фаз не превышает номинальный ток двигателя. Пересчет параметров преобразователя на другую мощность производится по формулам:

где P — мощность преобразователя в киловаттах, в то время как паспортная мощность двигателя — это его мощность на валу. Если коэффициент полезного действия двигателя неизвестен, его можно брать в среднем 75…80%.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector