Autoservice-mekona.ru

Автомобильный журнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Электрическая схема однофазного асинхронного двигателя к однофазной сети

Однофазное подключение трехфазного двигателя к электрической сети

Содержание статьи

Асинхронные электродвигатели широко применяются в промышленности благодаря относительной простоте конструкции, хорошим рабочим характеристикам, удобству управления.

Подобные устройства часто попадают в руки домашнего мастера и он, пользуясь знанием основ электротехники, подключает такой электродвигатель для работы от однофазной сети 220 вольт. Чаще всего его используют для наждака, обработки древесины, измельчения зерен и выполнения других простых работ.

Даже на отдельных промышленных станках и механизмах с приводами встречаются образцы различных двигателей, способных работать от одной или трех фаз.

Чаще всего у них используется конденсаторный запуск, как наиболее простой и приемлемый, хотя это не единственный способ, известный большинству грамотных электриков.

Принцип работы трехфазного двигателя

Промышленные асинхронные электрические устройства систем 0,4 кВ выпускаются с тремя обмотками статора. К ним прикладываются напряжения, сдвинутые по углу на 120 градусов и вызывающие токи аналогичной формы.

Для запуска электродвигателя токи направляют таким образом, чтобы они создали суммарное вращающееся электромагнитное поле, оптимально воздействующее на ротор.

Конструкция статора, используемая для этих целей, представлена:

2. магнитопроводом сердечника с уложенными в него тремя обмотками;

3. клеммными выводами.

В обычном исполнении изолированные провода обмоток собраны по схеме звезды за счет установки перемычек между винтами клемм. Кроме этого способа еще существует подключение, называемое треугольником.

В обоих случаях обмоткам назначено направление: начало и конец, связанное со способом монтажа — навивки при изготовлении.

Обмотки нумеруются арабскими цифрами 1, 2, 3. Их концы обозначаются К1, К2, К3, а начала — Н1, Н2, Н3. У отдельных типов двигателей подобный способ маркировки может быть изменен, например, С1, С2, С3 и С4, С5, С6 или другими символами либо вообще не применяться.

Правильно нанесенная маркировка упрощает подключение проводов питания. При создании на обмотках симметричной схемы расположения напряжений, обеспечивается создание номинальных токов, осуществляющих оптимальную работу электродвигателя. В этом случае их форма в обмотках полностью соответствует подводимому напряжению, повторяет его без каких-либо искажений.

Естественно, следует понимать, что это чисто теоретическое заявление, ибо на практике токи преодолевают различные сопротивления, незначительно отклоняются.

Наглядному восприятию происходящих процессов помогает изображение векторных величин на комплексной плоскости. Для трехфазного двигателя токи в обмотках, создаваемые приложенным симметричным напряжением, изображаются следующим образом.

При питании электродвигателя системой напряжений с тремя равномерно разнесенными по углу и одинаковыми по величине векторами в обмотках протекают такие же симметричные токи.

Каждый из них образует электромагнитное поле, сила индукции которого наводит в обмотке ротора собственное магнитное поле. В результате сложного взаимодействия трех полей статора с полем ротора создается вращательное движение последнего, обеспечивается создание максимальной механической мощности, вращающей ротор.

Принципы подключения однофазного напряжения к трехфазному двигателю

Для полноценного подключения к трем одинаковым статорным обмоткам, разнесенных по углу на 120 градусов, два вектора напряжения отсутствуют, имеется только один из них.

Можно подать его всего в одну обмотку и заставить ротор вращаться. Но, эффективно использовать такой двигатель не получится. Он будет обладать очень малой выходной мощностью на валу.

Поэтому возникает задача подключения этой фазы таким образом, чтобы она в разных обмотках создавала симметричную систему токов. Другими словами, нужен преобразователь напряжения однофазной сети в трехфазную. Подобная задача решается разными методами.

Если отбросить сложные схемы современных инверторных установок, то можно реализовать следующие распространенные способы:

1. использование конденсаторного запуска;

2. применение дросселей, индуктивных сопротивлений;

3. создание различных направлений токов в обмотках;

4. комбинированный способ с выравниванием сопротивлений фаз для образования одинаковых амплитуд у токов.

Кратко разберем эти принципы.

Отклонение тока при прохождении через емкость

Наиболее широко практикуется конденсаторный запуск, позволяющий отклонять ток в одной из обмоток за счет подключения емкостного сопротивления, когда создается опережение тока от вектора приложенного напряжения на 90 градусов.

В качестве конденсаторов обычно используются металлобумажные конструкции серий МБГО, МБГП, КБГ и подобные. Электролиты не приспособлены для пропускания переменного тока, быстро взрываются, а схемы, предусматривающие их использование, отличаются сложностью, низкой надежностью.

В этой схеме ток отличается по углу от номинальной величины. Он отклоняется всего на 90 градусов, не доходя на 30 о (120-90=30).

Отклонение тока при прохождении через индуктивность

Ситуация аналогична предыдущей. Только здесь ток отстает от напряжения на те же 90 градусов, а тридцати недобирает. Кроме того, конструкция дросселя не такая простая, как у конденсатора. Его надо рассчитать, собрать, настроить под индивидуальные условия. Этот способ не получил широкого распространения.

При использовании конденсаторов или дросселей токи в обмотках электродвигателя не доходят до требуемого угла на тридцатиградусный сектор, показанный красным цветом на картинке, что уже создает повышенные потери энергии. Но, с ними приходится мириться.

Они мешают созданию равномерного распределения сил индукции, создают тормозящий эффект. Точно оценить его влияние сложно, но при простом подходе деления углов получается (30/120=1/4) потеря 25%. Однако, можно ли так считать?

Отклонение тока подачей напряжения обратной полярности

В схеме звезды принято фазный провод напряжения подключать на вход обмотки, а нулевой — на ее конец.

Если в две разнесенные на 120 о фазы подать одно и то же напряжение, но разделить их, а во второй изменить полярность, то токи сдвинутся по углу относительно друг друга. Они станут формировать электромагнитные поля разного направления, влияющего на вырабатываемую мощность.

Только при этом способе по углу получается отклонение токов на небольшое значение — 30 о .

Этим методом пользуются в отдельных случаях.

Способы комплексного применения конденсаторов, индуктивностей, изменения полярности обмоток

Первые три перечисленных метода не позволяют поодиночке создавать оптимально симметричное отклонение токов в обмотках. Всегда возникает их перекос по углу относительно стационарной схемы, предусмотренной для трехфазного полноценного питания. За счет этого происходит образование противодействующих моментов, тормозящих раскрутку, снижающих КПД.

Поэтому исследователи провели многочисленные эксперименты, основанные на разных сочетаниях этих способов с целью создания преобразователя, обеспечивающего наибольшую эффективность работы трехфазного двигателя. Эти схемы с подробным разбором электротехнических процессов приводятся в специальной учебной литературе. Их изучение повышает уровень теоретических знаний, но в своем большинстве они редко применяются на практике.

Хорошая картина распределения токов создается в схеме, когда:

1. на одну обмотку подается фаза прямого включения;

2. на вторую и третью обмотки напряжение подключают через конденсатор и дроссель, соответственно;

3. внутри схемы преобразователя осуществляется выравнивание амплитуд токов за счет подбора реактивных сопротивлений с компенсацией дисбаланса активными резисторами.

Хочется обратись внимание на третий пункт, которому многие электрики не придают значения. Просто посмотрите на следующую картинку и сделайте вывод о возможности равномерного вращения ротора при симметричном приложении к нему сил одинаковых и разных по величине.

Комплексный метод позволяет создать довольно сложную схему. Она очень редко применяется на практике. Один из вариантов ее реализации для электродвигателя мощностью в 1кВт показан ниже.

Для изготовления преобразователя необходимо создать непростой дроссель. Это требует затрат времени и материальных средств.

Также трудности возникнут при поиске резистора R1, который будет работать с токами, превышающими 3 ампера. Он должен:

обладать мощностью, превышающей 700 ватт;

надежно изолироваться от токоведущих частей.

Существует еще несколько технических сложностей, которые придется преодолеть для создания такого преобразователя трехфазного напряжения. Однако, он довольно универсален, позволяет подключать двигатели с мощностью до 2,5 киловатт, обеспечивает их устойчивую работу.

Итак, технический вопрос подключения трехфазного асинхронного двигателя в однофазную сеть решен посредством создания сложной схемы преобразователя. Но, он не нашел практического применения по одной простой причине, от которой невозможно избавиться — завышенное потребление электроэнергии самим преобразователем.

Мощность, затрачиваемая на создание схемы трехфазных напряжений подобной конструкцией, превышает минимум в полтора раза потребности самого электродвигателя. При этом суммарные нагрузки, создаваемые на подводящую питание электропроводку, сравнимы с работой старых сварочных аппаратов.

Читать еще:  Vw polo sedan масло для двигателя какое лучше

Электрический счетчик, к радости продавцов электроэнергии, очень быстро начинает перечислять деньги из кошелька домашнего мастера на счет энергоснабжающей организации, а это хозяевам совсем не нравится. В итоге сложное техническое решение создания хорошего преобразователя напряжения оказалось ненужным для практического применения в домашнем хозяйстве, да и на промышленных предприятиях тоже.

Допонительно

Схемы включения трехфазных асинхронных двигателей для работы от однофазных сетей:

Схемы а — е применяются в том случае, когда фазы обмотки статора жестко соединены в звезду или треугольник и у двигателя имеется только три выводных конца. Наилучшими из этих схем следует считать схемы в и е. При включении двигателя по этим схемам в случае правильного подбора емкости конденсатора он обладает вполне удовлетворительными пусковыми и рабочими свойствами.

Схемы ж и з применяются в случае, когда у двигателя имеется шесть выходных концов — начала и концы всех фаз. При таком соединении обмоток двигатель практически не отличается от обычного однофазного асинхронного двигателя с пусковым сопротивлением или емкостью.

Обмотки двух его фаз, соединенные последовательно, образуют рабочую обмотку, а обмотка третьей фазы — пусковую обмотку. Рабочая обмотка, как и в обычном однофазном двигателе с пусковым сопротивлением или емкостью, занимает 2/3 пазов статора, пусковая обмотка — 1/3 пазов.

При правильном выборе активного сопротивления или емкости этот двигатель может иметь примерно такие же пусковые и рабочие свойства, как и специально рассчитанный однофазный асинхронный двигатель с пусковой обмоткой. (Ю. М. Юферов. Электрические двигатели автоматических устройств)

4 заключительных вывода

1. Технически использовать однофазное подключение трехфазного двигателя можно. Для этого создано много разнообразных схем с различной элементной базой.

2. Практически применять этот способ для длительной работы приводов в промышленных станках и механизмах нецелесообразно из-за больших потерь энергии потребления, создаваемых посторонними процессами, ведущими к низкому КПД системы, повышению материальных затрат.

3. В домашних условиях схему можно использовать для выполнения кратковременных работ на неответственных механизмах. Длительно работать подобные устройства могут, но при этом оплата электроэнергии значительно возрастает, а мощность работающего привода не обеспечивается.

4. Для эффективной эксплуатации асинхронного двигателя лучше использовать полноценную трехфазную сеть питания. Если такой возможности нет, то лучше отказаться от этой затеи и приобрести специальный однофазный электродвигатель соответствующей мощности.

Подключение электродвигателя через конденсатор: расчет и схема

Тема очень востребованная и вызывающая множество вопросов. Для начала разберемся какие бывают асинхронные электродвигатели переменного тока и в каких случаях применяется подключение через конденсаторы. Затем рассмотрим схемы и формулы для выбора конденсаторов. Задача, которая стоит перед нами в этой статье: подключить трехфазный двигатель к однофазному питанию используя схему с конденсаторами. Для этого будет представлена схема и формулы для выбора значения емкостей конденсаторов.

Двигатели по способу питания делятся на трехфазные и однофазные. Вначале разберемся с подключением через конденсатор трехфазного ЭД.

Коротенько про трехфазные асинхронные электродвигатели

Трехфазные асинхронные электродвигатели получили широкое применение в различных отраслях промышленности, сельского хозяйства, быту. ЭД состоит из статора, ротора, клеммной коробки, щитов с подшипниками, вентилятора и кожуха вентилятора.

Стягивающие шпильки я уже снимать не стал, чтобы добраться до статора с ротором. Но выпирающая часть, на которой сидит вентилятор и есть ротор. Ротор — вращающаяся часть, статор неподвижная (на рисунке его не видно).

Далее посмотрим на клеммник более внимательно. С одной стороны у нас С1-С2-С3, а ниже — С4-С5-С6. Это начала и концы обмоток фаз электродвигателя. У нас имеются три фазы, так как двигатель трехфазный — С1-С4, С2-С5, С3-С6. Также присутствует на фото ржавый болт заземления, он находится в клеммнике сверху слева.

Соединение, которое видно на фотографии называется “звезда”. Я уже писал про звезду и треугольник для трансформаторов — аналогично и при подключении электродвигателей. Сбоку на фотографии я добавил как выглядит схематично звезда для данного электродвигателя и треугольник. Вся разница в расположении перемычек. Их комбинации определяют схему соединения ЭД.

работа трехфазного электродвигателя без одной фазы при постоянной нагрузке

Электродвигатель может работать от однофазной сети и без дополнительных мер и схем. Например, при повреждении одной из фаз. Однако, в данном случае произойдет снижение частоты вращения. Снижение частоты вращения приведет к увеличению скольжения, что в свою очередь вызовет увеличение тока двигателя.

А возрастание тока приведет к нагреву обмоток. При такой ситуации необходимо разгрузить ЭД до 50%. Работа в таком режиме возможна, однако, если двигатель остановится, то повторно пуститься уже не получится.

почему для пуска от однофазной сети используют именно конденсаторы

Повторный пуск не произойдет, так как магнитное поле статора будет пульсирующим и, коротко говоря, из-за направленности определенных векторов в противоположные стороны ротор будет неподвижен. Чтобы двигатель пустился, нам необходимо изменить расположение этих векторов. Для этого и используют элементы, которые сдвигают фазы векторов. Рассмотрим схему, которая реализует эту возможность.

На схеме мы видим, что обмотка разделилась на две ветви — пусковую и рабочую. Пусковая используется с начала пуска до разворота двигателя, затем отключается и используется только рабочая. Для отключения пусковой можно использовать кнопку, например. Нажал и держи пока не развернулся двигатель, а потом отпускай и цепочка разорвана.

Фазосдвигающими элементами могут выступать сопротивления или конденсаторы. Разница в применении тех или иных в форме магнитного поля. И если, говорить проще, то выбирают конденсаторы, так как при одном значении пускового момента, меньший пусковой ток будет при использовании конденсаторов.

А при одинаковых пусковых токах у схем с конденсатором будет больше начальный вращающий момент, то есть движок будет быстрее разгоняться, что несомненно лучше для эксплуатации.

Важно: подключение через конденсаторы производят для двигателей до 1,5кВ. Вычислено, что для более мощных ЭД стоимость емкостных элементов превысит стоимость самого движка, следовательно, их установка является нерентабельной. Хотя, если достать их нахаляву, что в нашем пространстве не редкость, то можно и попробовать.

как подключить электродвигатель через конденсатор

Так как конденсаторы выгоднее во многих смыслах для пуска ЭД, то разберем пару схемок пуска с применением конденсаторов. Для схемы соединения “треугольник” и для схемы соединения “звезда”.

Пусковая ветвь будет использоваться до момента разворота ЭД, рабочая — напротяжении всей работы двигателя.

конденсаторы для запуска электродвигателя

Логично будет далее разобраться, как рассчитать пусковой и рабочий конденсатор для двигателя. Для правильного подбора нам необходимо знать паспортные данные ЭД, или иметь шильду с заводскими значениями.

Существуют различные схемы и в каждой конденсаторы выбираются по своему. Для схем, приведенных выше расчет емкости конденсаторов осуществляется по двум формулам:

Рабочая емкость = 2800*Iном.эд/Uсети

Рабочая емкость = 4800*Iном/Uсети

Пусковая емкость в обоих случаях принимается равной 2-3 от рабочей.

В формулах выше Iном — это номинальный ток фазы электродвигателя. Если посмотреть на табличку, где через дробь указываются два тока, то это будет меньший из них. Uсети — напряжение питающей сети(

220). Значит, вычислили мы ёмкость и следующим шагом нам надо знать напряжение на конденсаторе. Для схем приведенных на рисунках выше напряжение на конденсаторе равняется 1,15 от напряжения сети. Но это напряжение переменного тока, а для выбора конденсаторов надо знать напряжение постоянного тока. Тут нам и понадобится небольшая табличка:

Например, напряжение сети

220, умножаем на 1,15 получаем 253. В таблице смотрим переменка 250 соответствует постоянке 400В для емкости до 2мкФ, или 600В для емкостей 4-10мкФ. Нужно, чтобы номинальное напряжение конденсатора было равно или больше расчетного.

Далее, зная рабочее напряжение и требуемую емкость подбираем конденсаторы по параметрам: типы и нужное количество. Конденсаторы для пусковой цепи порой так и называются — пусковыми.

Вот так, шаг за шагом, мы разобрали как подключить трехфазный асинхронный электродвигатель в однофазную сеть и что для этого необходимо рассчитать и знать. Существуют и другие схемы для подключения двигателя через конденсатор, но эти вопросы рассмотрим в другой раз в другой статье.

Читать еще:  Что делать если перелил масло в двигатель авто

2020 Помегерим! — электрика и электроэнергетика

Однофазный двигатель

Однофа́зный дви́гатель — электродвигатель, конструктивно предназначенный для подключения к однофазной сети переменного тока.

Фактически является двухфазным, но вследствие того, что рабочей является только одна обмотка, двигатель называют однофазным.

Содержание

  • 1 Однофазный асинхронный двигатель
  • 2 Принцип работы двигателя
  • 3 Многофазные двигатели в однофазной сети
  • 4 Примечания
  • 5 Ссылки

Однофазный асинхронный двигатель [ править | править код ]

Строго говоря, именно однофазным называется такой асинхронный двигатель, который имеет на статоре одну рабочую обмотку, которая подключается к сети однофазного тока. Запуск осуществляется вращающимся магнитным полем, создающимся основной обмоткой и дополнительной (меньшей) пусковой обмоткой, которая подключается через ёмкость/индуктивность к основной сети на время пуска или замыкается накоротко (в двигателях малой мощности).

Преимуществом двигателя является простота конструкции (короткозамкнутый ротор). Недостатки — малый пусковой момент (или вообще его отсутствие) и низкий КПД.

Применяются в основном в вентиляторах малой мощности (настольных, оконных, для ванных комнат и т. п.). Самым массовым советским вентилятором такого типа (и двигателем для него) был «ВН-2» мощностью 15 Ватт. Особенностью его конструкции является установка шарикового подшипника только с одной стороны вала двигателя (противоположной крыльчатке вентилятора), в результате из-за значительных изгибающих нагрузок подшипник (и двигатель) сильно шумит даже на малых оборотах.

Принцип работы двигателя [ править | править код ]

Однофазный ток статора электродвигателя создает пульсирующее магнитное поле, которое можно разложить на два поля, имеющих равные амплитуды и вращающиеся в противоположные стороны с одинаковой частотой. При неподвижном роторе эти поля создают одинаковые по величине, но разные по знаку моменты. Поэтому при пуске результирующий момент двигателя, не имеющего специальных пусковых приспособлений, равен нулю, и двигатель не может начать вращаться. Однако если ротор привести во вращение в ту или иную сторону, то один из моментов будет преобладать и вал двигателя будет продолжать вращаться в сторону начального вращения [1] .

Для создания пускового момента может использоваться пусковая обмотка, подключаемая на короткое время при запуске двигателя [2] . Для создания вращающегося магнитного поля необходимо, чтобы магнитный поток через пусковую обмотку был сдвинут по фазе относительно рабочей. Для этого может применяться конденсатор (именно для пусковой обмотки используется редко из-за значительных габаритов конденсатора), либо комбинация из индуктивности и активного сопротивления самой пусковой обмотки. Так как обмотка подключается на короткое время, потери, и следовательно, нагрев пусковой обмотки не имеет большого значения.

Другой способ создания пускового момента — использование экранированных полюсов [2] . В таком двигателе полюса расщепляются и на часть наконечников надевается короткозамкнутая обмотка — экран. Такие двигатели имеют низкий КПД и пусковой момент, потому используются только в маломощных приборах.

Многофазные двигатели в однофазной сети [ править | править код ]

Не вполне корректно однофазными двигателями также называют конструктивно двух- и трёхфазные асинхронные электродвигатели, подключаемые через схемы согласования в однофазную сеть (конденсаторные двигатели).

Двухфазный двигатель, как правило, проектируется именно в расчёте на работу в однофазной сети (как конденсаторный двигатель). Обе его обмотки (фазы двигателя) являются рабочими и включены постоянно — одна непосредственно в сеть, вторая — через фазосдвигающую цепь (как правило, конденсаторы). Он имеет лучшие эксплуатационные параметры из всех типов асинхронных двигателей при работе в однофазной сети. Широко применялся в активаторных стиральных машинах советского времени.

Трехфазный асинхронный электродвигатель также может работать в однофазной сети с потерей мощности. При этом для запуска необходима фазосдвигающая цепь, которая обычно строится или из ёмкости или из индуктивности:

  • При ёмкостном запуске на одну из обмоток подаётся напряжение (ток) через ёмкость, которая сдвигает фазу тока вперёд на 90° (без учёта потерь). После запуска напряжение с фазосдвигающей обмотки можно снять.
  • При индуктивном запуске на одну из обмоток подаётся напряжение (ток) через индуктивность, которая сдвигает фазу тока назад на 90° (без учёта потерь). После запуска напряжение с фазосдвигающей обмотки можно снять.
  • В некоторых случаях, при питании от однофазной сети, запуск осуществляется вручную проворотом ротора. После проворота ротора двигатель работает самостоятельно.

Электрическая схема однофазного асинхронного двигателя к однофазной сети

Глава тридцатая ОДНОФАЗНЫЕ АСИНХРОННЫЕ МАШИНЫ

§ 30-1. Основы теории однофазных асинхронных двигателей

Основные положения. В тех случаях, когда потребление электрической энергии невелико (жилые дома, торговые предприятия и т. д.) или когда выполнение трехфазных сетей затруднительно (например, железные дороги, электрифицируемые на переменном токе), применяются однофазные электрические сети. При этом возникает необходимость использования однофазных двигателей переменного тока. Мощности однофазных двигателей обычно относительно невелики (до 5—10 кет).

Однофазный асинхронный двигатель имеет на статоре однофазную обмотку, а на роторе — обмотку в виде беличьей клетки, как и у трехфазного короткозамк-нутого двигателя. Можно представить себе, что однофазный асинхронный двигатель получается из трехфазного путем отключения одной фазы статора (рис. 30-1, а). Оставшиеся две фазы статора с фазной зоной 60° составляют тогда вместе однофазную обмотку с фазной зоной 120°. Такая однофазная обмотка обладает тем преимуществом, что она не создает в воздушном зазоре третьей гармоники магнитного поля и имеет достаточно большой обмоточный коэффициент (см. § 21-4).

Однофазный ток /х статора однофазного двигателя создает пульсирующее магнитное поле, которое можно разложить на два поля, имеющих равные амплитуды и вращающиеся в противоположные стороны с одинаковой скоростью

При неподвижном роторе (п — 0, s — 1) эти поля создают одинаковые по величине, но разные по знаку моменты Mi и Мг (рис. 30-2). Поэтому при пуске результирующий момент

двигателя, не имеющего специальных пусковых приспособлений, равен нулю и двигатель не может прийти во вращение. Если, однако, ротор приведен во вращение в ту или иную сторону, то один из моментов М.х или М% будет преобладать. Если при этом М > Мст, то двигатель достигнет определенной установившейся скорости вращения. Оба направления вращения двигателя равноценны, и тормозной режцм работы отсутствует.

По своим рабочим свойствам однофазный двигатель близок к трехфазному, работающему при сильном искажении симметрии питающих напряжений <см.

Рис 30-1. Схема (а) и диаграмма токов статора (б) однофазного асинхронного двигателя, рассматриваемого как трехфазный с отключением одной фазы

§ 2§-£). Поэтому энергетические показатели однофазного двигателя хуже, чем

Трехфазный двигатель будет работать в режиме однофазного двигателя, если произойдет обрыв одной фазы цепи статора (например, перегорание защитного плавкого предохранителя в одной фазе). При этом наступает опасный для двигателя режим работы.

Действительно, полезная мощность двигателя в трехфазном режиме

При переходе трехфазного двигателя в однофазный режим скорость вращения практически не изменится, и поэтому мощность на валу Рх « Р3. Если бы к. п. д. и cos ф не изменились, то ток в однофазном режиме /г был бы в ]Аз раза больше тока в трехфазном режиме /3. В действительности ц и cos ф уменьшаются и увеличение тока будет больше. Если двигатель нес большую нагрузку, то при переходе в однофазный режим ток будет значительно больше номинального, и если двигатель при этом не будет отключен, то в результате перегрева он выйдет из строя. Работа «на двух фазах» является нередкой причиной повреждения трехфазных двигателей при их защите плавкими предохранителями, так как ток перегорания плавкой вставки приходится выбирать равным около 2,5 /и, чтобы плавкая вставка не перегорала при пуске двигателя.

Основы теории однофазного двигателя. Режим работы однофазного двигателя целесообразно исследовать как несимметричный режим работы трехфазного двигателя.

В соответствии с рис. 30-1, а

Рис. 30-2. Кривые моментов однофазного двигателя

Вектйрная диаграмма .токов статора на основании приведенных соотношений представлена на рис. 30-1, б.

то все токи и напряжения схемы рис. 30-3 в Уъ раза больше их симметричных составляющих. Необходимо подчеркнуть, что сопротивления схемы рис. 30-3 являются сопротивлениями фазы трехфазного двигателя и сопротивления т, х’аг при проявлении эффекта вытеснения тока для верхней и нижней- частей схемы различены ввиду различия частот прямой и обратной составляющих токов ротора. Вращающий момент _ однофазного двигателя

Читать еще:  Как установить заглушку на двигателе ваз 2106

где вторичные токи 1′л и I’S3 соответствуют схеме замещения рис. 30-3.

При постоянстве параметров двигателя для его токов существует круговая диаграмма, которая здесь не рассматривается.

§ 30-2. Разновидности однофазных асинхронных двигателей

Как было установлено выше, однофазный двигатель с одной обмоткой на статоре не развивает пускового момента и не способен прийти во вращение В связи с этим необходимы дополнительные меры для создания в двигателе пускового момента. Эти меры направлены на усиление при пуске прямого поля и ослабление обратного, чтобы прл s = 1 было

Наилучшие условия пуска достигаются в случае, когда обратное поле при пуске полностью уничтожается и поэтому М2 = 0. Разные виды однофазных асинхронных двигателей различаются друг от друга способами создания отличного от нуля пускового момента.

Двигатели с пусковой обмоткой (рис. 30-4) являются наиболее распространенными однофазными двигателями. В них, кроме рабочей обмотки Р с фазной зоной

Рис. 30-4_Схема (а) и векторные диаграммы (б) однофазного асинхронного двигателя с пусковой обмоткой

120°, на статоре имеется также пусковая обмотка П с фазной зоной 60°, сдвинутая относительно рабочей обмотки на 90° эл. Последовательно с пусковой обмоткой включается фазосмещающий элемент (сопротивление) 2П для создания сдвига фаз -ф между токами обмоток /р и /п. Н. с. двух обмоток

в общем случае, когда Fv Ф Fn и ‘ф Ф 90° (рис. 30-5, о), составляют несимметричную двухфазную систему векторов, которую можно разложить на системы прямой (Fj) и обратной (F2) последовательности. Учитывая, что вместо оператора трех Лячной глетемы

но одно из них будет сильнее, в результате чего развивается пусковой момент М и при Мп > Мст двигатель пойдет в ход. При Zn = /ю L направление вращения будет обратным по сравнению с двумя другими случаями.

Пусковые условия будут лучшими при включении емкости в пусковую фазу. Однако необходимая величина емкости С довольно велика, вследствие чего размеры и стоимость конденсатора также велики. Поэтому конденсаторный пуск применяется сравнительно редко, лишь при необходимости большого пускового момента. Пуск с помощью индуктивного сопротивления дает наихудшие результаты и в настоящее время почти не используется. Чаще всего применяется пуск с помощью активного сопротивления. При этом обычно сама пусковая обмотка выполняется с повышенным активным сопротивлением (уменьшенное сечение обмоточного провода, а также намотка части витков катушек в бифиляр). Иногда

Рис. 30-6. Схемы включения и вид механических характеристик однофазных асинхронных двигателей с пусковой обмоткой (а, 6) н конденсаторных (в, г)

применяются также схемы пуска, когда в одну фазу включается активное, 1 а в другую — индуктивное- или емкостное сопротивление.

После того как двигатель при пуске достигнет определенной скорости вращения, пусковая обмотка отключится с помощью центробежного выключателя, реле времени, токового реле или вручную. При этом двигатель будет работать только с рабочей обмоткой, и относительно режима егр работы действительно все сказанное в | 30-1.

Типичный вид механических характеристик однофазных двигателей показан на рис. 30-6, а и б. Штриховая лин^ня в области 0

Для работы от однофазной сети могут быть использованы также трехфазные двигател-и. К числу лучших- схем включения таких двигателей относятся схемы рис. 30-7. Две нижние схемы рис. ЗО 1 ? применяются в случае, когда выведены все шесть концов обмотки. Двигатели с соединением обмоток согласно схемам рис. 30-7 практически равноценны двигателям, которые спроектированы для работы как однофазные. Номинальная мощность при этом составляет 40—50% от мощности в симметричном трехфазном режиме. После окончания пуска фаза с пусковым сопротивлением’ отключается.

Асинхронный конденсаторный двигатель (рис. 30-8) имеет на статоре две обмотки, которые обе являются рабочими, и в одну из этих обмоток включается емкость Ср, величина которой рассчитывается так, что при номинальной нагрузке существует только вращающееся поле прямой последовательности Обе обмотки

при этом имеют фазные зоны по 90° эл. и сдвинуты относительно друг друга в пространстве также на 90° эл. Мощность обеих обмоток при Р — Ря также одинакова, но их числа витков, токи и напряжения различны. Конденсаторный двигатель в сущности представляет собой двухфазный двигатель, который подключен посредством конденсатора Ср к однофазной сети и при Р = Рп имеет симметричную нагрузку фаз. При других нагрузках симметрия н. с. фаз нарушается и появляется также обратное поле, так как при различных нагрузках величины емкости; необходимые для достижения симметричной нагрузки, также различны.

Величина емкости Ср, подобранная по рабочему режиму, недостаточна для получения высокого пускового момента (рис. 30-6, в). Поэтому в необходимых случаях параллельно Ср на время пуска включается добавочная, пусковая емкость Сп (рис. 30-6, г).

Использование материалов в конденсаторном двигателе и его к. п. д. значительно выше, чем в однофазных двигателях с пусковой обмоткой, и почти такие же, как у трехфазных двигателей. Коэффициент мощности конденсаторного двигателя ввиду наличия конденсатора выше, чем у трехфазных двигателей равной мощности.

Рис. 30-7. Некоторые схемы включения трехфазных асинхронных двигателей для работы от однофазной сети

Рис. 30-8. Схема асинхронного конденсаторного двигателя (а) и его векторная диаграмма при круговом поле (б)

В СССР изготовляются однофазные двигатели единой серии с пусковым сопротивлением (АОЛБ), с пусковой емкостью (ДОЛГ) и конденсаторные с рабочей и пусковой емкостью (АОЛД) мощностью от 18 до 600 вт. Двигатели с пусковым активным сопротивлением применяются в стиральных и холодильных маши-

нах, доильных аппаратах, машинах для стрижки овец, центрифугах, для привода мелких станков и т. д. Двигатели с конденсаторным пуском используются при повышенных требованиях к пусковому моменту (установки для кондиционирования воздуха, компрессоры и др.).

Величина рабочей емкости конденсаторного двигателя определяется из следующих условий (рис. 30-8).

Коэффициентом трансформации k называется отношение числа витков конденсаторной (Ь) и неконденсаторной (а) обмоток:

Отсюда следует, что мощность конденсатора ‘должна быть равна полной мощности

двигателя при круговом поле. Таким образом, мощность конденсатора достаточно

Двигатель с экранированными полюсами (рис. 30-9, а) имеет на статоре явно-

выраженные полюсы с однофазной обмоткой О и ротор с обмоткой в виде беличьей

клетки. Часть наконечника каждого полюса охвачена (экранирована) короткозамкнутым витком К-Ток статора /а создает в неэкра-нированной и экранированной частях полюса пульсирующие потоки Ф; и Ф* (рис 30-9, б). Поток Ф» индуктирует в короткозамкнутом витке э. д. с. Ёк, которая отстает от

Рис. 30-9. Устройство (а) и векторная диаграмма потоков статора (б) однофазного асинхронного двигателя с экранированными полюсами

сдвинут по фазе относительно потока неэкранированной части полюса Ф^на некоторый угол ф. Так как потоки Ф[ и Ф9 сдвинуты также в пространстве, то возникает вращающееся поле. Это поле не круговое, а эллиптическое, т. е. содержит также составляющую обратной последовательности, так как потоки Ф< и Фэ не равны по величине, и сдвинуты в пространстве и во времени на недостаточно большие углы. Тем не менее, при пуске создается вращающий момент М„ = 10 2

Магнитное поле простейшего экранированного двигателя содержит значительную третью пространственную гармонику, которая вызывает большой провал кривой момента (см § 25-3). Для улучшения формы поля применяют следующие меры: между наконечниками соседних полюсов j станавливают магнитные гаунты Ш (рис. 30-9, а) из листовой стали, увеличивают зазор под неэкранированной частью полюса, на каждом полюсе помещают два-три короткозамкнутых витка разной ширины.

Вследствие больших потерь в короткозамкнутом витке двигатель имеет низкий к п. д. (до 25—40%) Экранированные двигатели простейшей конструкции строятся на мощности от долей ватта до 20—30 ею, а при усовершенствованной конструкции — до 300 вт Область применения этих двигателей — настольные и прочие вентиляторы, проигрыватели, магнитофоны и пр.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector