Autoservice-mekona.ru

Автомобильный журнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что является базовой деталью кшм и всего двигателя

Кривошипно-шатунный механизм

В одноцилиндровом четырехтактном двигателе на каждые два оборота коленчатого вала приходится четыре хода поршня, только один из которых — рабочий. Это приводит к неравномерной работе двигателя. Для небольших двигателей, таких? Как легкие лодочные моторы, двигатели мопедов, легких мотоциклов и т. д., такая неравномерность не представляет большой проблемы. Для более тяжелых автомобилей требуется большая мощность двигателя, а, следовательно, и больший рабочий объем цилиндра. В этом случае неравномерность работы двигателя становится более заметной. Вот почему на современных автомобилях применяются многоцилиндровые ДВС. Применение нескольких цилиндров, в которых рабочий ход происходит в разные моменты времени, дает возможность сгладить пульсации крутящего момента на вале двигателя. Большинство легковых автомобилей малого класса имеют четырехцилиндровые двигатели, хотя иногда используются двухцилиндровые и трехцилиндровые. На более тяжелых автомобилях, требующих большой мощности, наряду с четырехцилиндровыми, могут применяться пятицилиндровые и шестицилиндровые двигатели. Легковые автомобили высшего класса оборудуются восьмицилиндровыми и двенадцатицилиндровыми двигателями, хотя встречаются двигатели с десятью цилиндрами. Большинство грузовых автомобилей средней и большой грузоподъемности имеют двигатели с шестью и восемью цилиндрами.

  • Блок цилиндров
  • Головка блока цилиндров
  • Поршень
  • Шатун
  • Коленчатый вал

Неподвижные детали кривошипно-шатунного механизма

Кривошипно-шатунный механизм многоцилиндрового двигателя состоит из подвижных и неподвижных деталей.
К подвижным деталям КШМ относятся: поршень, поршневые кольца, поршневой палец, шатун, коленчатый вал, вкладыш подшипника и маховик. Неподвижными деталями КШМ являются: блок цилиндров, головка блока цилиндров и прокладка головки блока.
Кривошипно-шатунный механизм воспринимает давление газов, возникающих при сгорании топлива в цилиндрах двигателя, и преобразует это давление в механическую работу по вращению коленчатого вала.

Схемы расположения цилиндров в двигателях различной компоновки:
а — рядный четырехцилиндровый;
б — V-образный шестицилиндровый;
в — оппозитный четырехцилиндровый;
г — VR-двигатель шестицилиндровый;
д и е — W-образные 12-цилиндровые двигатели;
α — угол развала

Расположение цилиндров в блоке определяет компоновочную схему двигателя. Если оси цилиндров расположены в одной плоскости, то такие двигатели называют рядными.
Рядные двигатели устанавливаются на автомобиле или вертикально, или под углом к вертикальной плоскости для уменьшения высоты, занимаемой двигателем, а в некоторых случаях — горизонтально, например при размещении под полом автобуса. В V-образных двигателях оси цилиндров находятся в двух плоскостях, расположенных под углом друг к другу. Угол между осями цилиндров может быть различным. Разновидностью такого двигателя можно считать двигатель с так называемыми оппозитными (противолежащими) цилиндрами (в некоторых странах такую компоновку называют «boxer»), у которого этот угол составляет 180°. Сравнительно недавно появился двигатель W12, разработанный группой компаний Volkswagen, схема которого представляет собой как бы два V-образных двигателя с разными углами между осями цилиндров, имеющими общий коленчатый вал.

Двигатель W12, устанавливаемый на AudiA8 с 2001г., практически состоит из двух двигателей V6 с различными углами развала цилиндров, использующих общий коленчатый вал

Базовые понятия КШМ ДВС — это диаметр цилиндра и ход поршня. Диаметр цилиндра — это диаметр отверстия, под поршень, выполненного в блоке цилиндров .. Ход поршня — расстояние между ВМТ и НМТ. Диаметр цилиндра и ход поршня принято измерять в миллиметрах, а объем двигателя – в литрах. Понятно, что два двигателя одинакового объема могут иметь различное число цилиндров и различную компоновку.

Если диаметр цилиндра больше хода поршня, то такой двигатель называют короткоходным. Данные двигатели развивают более высокие максимальные обороты коленчатого вала, и в них упрощается размещение впускных и выпускных клапанов, что дает возможность получения высокой мощности. Если ход поршня превышает диаметр цилиндра, то двигатель считается длинноходным. Такие двигатели, как правило, более экономичны и характеризуются большими значениями крутящего момента. Длинноходные двигатели имеют большую высоту, но короче по длине.
При разработке конструкции двигателя приходится решать вопрос о выборе величины объема отдельного цилиндра. Если объем цилиндра сделать очень маленьким, то он будет плохо заполняться топливно-воздушной смесью, и мощность такого двигателя будет низкой. В то же время нельзя безгранично увеличивать объем цилиндра, потому что при этом фронт распространения пламени может не успеть дойти до стенок цилиндра за то короткое время, которое отводится на рабочий ход, а это приведет к уменьшению давления в цилиндре и скажется на уменьшении мощностных показателей двигателя.
В современных автомобильных двигателях объем отдельного цилиндра редко превышает 0,8л, а в большинстве двигателей составляет около 0,5л.
Чем большее число цилиндров имеет двигатель, тем равномернее он работает. Пульсации, возникающие при работе ДВС, могут быть уменьшены применением массивного маховика, устанавливаемого на конце коленчатого вала. Чем меньше цилиндров имеет двигатель, тем большей массой должен обладать маховик. В то же время массивный маховик из-за своей инерционности ухудшает способность двигателя быстро набирать обороты. Поэтому конструкторам двигателей приходится принимать компромиссные решения.

Устройство автомобилей

Кривошипно-шатунный механизм

Основное назначение кривошипно-шатунного механизма – преобразовывать возвратно-поступательное движение поршня во вращательное движение коленчатого вала. Функция для автомобильного двигателя очень важная — ведь конечное звено любого автомобиля, его движитель — колесо перемещает обозначенное транспортное средство посредством вращательного движения.
Поскольку в тепловом двигателе все детали и узлы, составляющие кривошипно-шатунный механизм, работают в условиях высоких температурных и механических нагрузок, к их конструкции предъявляются соответствующие требования, определяющие их надежность и работоспособность. От выполнения этих требований во многом зависит надежность и приемлемый ресурс двигателя в целом.

Читать еще:  Ауди а 4 масло для двигателя какое рекомендуется

К кривошипно-шатунному механизму (КШМ) двигателя предъявляют следующие требования:

  • высокие прочность и жесткость;
  • коррозионная и механическая износостойкость;
  • минимальная масса;
  • плотная посадка поршня в цилиндре;
  • уравновешенность вращающихся деталей.

Кроме соблюдения требований, обуславливающих работоспособность деталей КШМ, этот механизм, как и все другие механизмы автомобиля, должен быть выполнен конструктивно таким образом, чтобы обеспечить удобство его ремонта и обслуживания. Это обеспечивается применением практичных типов соединений деталей и рациональных компоновочных решений, позволяющих получить доступ к любой группе деталей или детали КШМ при замене, ремонте или обслуживании.

Все детали КШМ делятся на две группы: неподвижные и подвижные. К неподвижным деталям относятся корпус (картер и цилиндры), головка блока цилиндров и поддон картера. Подвижными частями КШМ являются поршни с кольцами и поршневыми пальцами, шатуны, коленчатый вал и маховик.

Корпус кривошипно-шатунного механизма

Корпус КШМ объединяет в себе картер и цилиндры (или цилиндр). Он является базовой частью (остовом) двигателя. На нем устанавливаются все механизмы и системы двигателя, и посредством него двигатель устанавливается на автомобиле.
Корпус двигателя может иметь три исполнения:

  • картер, к которому крепятся отдельные цилиндры;
  • картер, к которому крепятся цилиндры, объединенные в один блок цилиндров;
  • блок-картер, в котором все элементы отлиты как одно целое.

В настоящее время с отдельными цилиндрами производят только двигатели воздушного охлаждения, так как изготовление блока цилиндров с охлаждающимися ребрами (высотой до 18 мм) представляет значительные технологические трудности.
Применение отдельных блоков цилиндров в современных автомобильных двигателях также ограничено. Они чаше всего используются в мощных дизелях, картеры и цилиндры которых изготовляют из легких сплавов. В большинстве автомобильных двигателей применяются блок-картеры несколько более сложные в изготовлении, но обладающие наиболее высокой жесткостью.

В зависимости от того, какие элементы корпуса двигателя воспринимают основную нагрузку, существуют следующие варианты силовых схем:

  • с несущим блоком цилиндров (рис. 1, а) ;
  • с несущими цилиндрами;
  • с несущими силовыми шпильками (рис. 1, б) .

Первый вариант получил наибольшее распространение. Здесь нагрузки от рабочих газов воспринимаются стенками цилиндров, рубашкой охлаждения (полости для прохода охлаждающей жидкости), головкой блока цилиндров, поперечными перегородками картера, которые заканчиваются коренными опорами.

Второй вариант используется в двигателях с отдельными цилиндрами, соединенными с картером и головкой блока цилиндров короткими болтами или шпильками. В этом случае под действием давления рабочего тела стенки цилиндров и рубашки охлаждения, если она имеется, испытывают напряжение разрыва.

В третьем варианте блок цилиндров (или отдельные цилиндры), головка блока цилиндров и крышки коренных подшипников стягиваются длинными силовыми шпильками, ввернутыми в перегородки картера.

Блок-картер КШМ

Блок-картер отливают из чугуна или алюминиевого сплава. Блок-картер V-образного двигателя показан на рис. 2 .
Горизонтальная перегородка делит блок-картер на верхнюю и нижнюю части. В верхней части блока и горизонтальной перегородке имеются отверстия под цилиндры или гильзы цилиндров. В вертикальных перегородках картера есть отверстия под подшипники коленчатого вала, которые обрабатывают в сборе с крышками подшипников. Поэтому крышки подшипников не взаимозаменяемы.
Для того чтобы повысить жесткость блок-картера, крышки коренных опор у некоторых двигателей дополнительно крепят к картерной части блока поперечными стяжными болтами.

В блок-картере выполнены отверстия для деталей механизма газораспределения, имеются плоскости для крепления фильтров, насосов и других механизмов.
Блок-картеры могут быть с цилиндрами, выполненными непосредственно в блоке, и со сменными гильзами цилиндров.

Гильзы цилиндров могут быть «мокрыми» или «сухими»: «мокрые» — если их наружные стенки омываются охлаждающей жидкостью, «сухие» — запрессовываются в расточенные отверстия цилиндров и не имеют контактов с охлаждающей жидкостью.

Для увеличения жесткости блок-картера двигателя выполняют следующее:

  • объединяют все основные элементы в единый силовой каркас, имеющий пространственную конфигурацию (рис. 2) ;
  • увеличивают число несущих перегородок, расположенных в одной плоскости с коренными опорами коленчатого вала;
  • делают дополнительное оребрение перегородок и стенок;
  • располагают плоскости разъема картера ниже оси коленчатого вала;
  • используют V-образную компоновку;
  • применяют туннельный картер.

Наиболее жесткую конструкцию имеет блок-картер с неразъемным туннельным картером (рис. 3) , который обычно применяется при использовании в качестве коренных опор подшипников качения. В этом случае коленчатый вал монтируется с торца двигателя, и наружные обоймы подшипников устанавливаются в расточенных гнездах картера. Туннельный блок-картер наиболее сложен в производстве.

Обычно блок-картеры выполняют из серого чугуна или из алюминиевых сплавов. Себестоимость блок-картера, выполненного из серого чугуна, ниже себестоимости аналогичного картера, выполненного из алюминиевого сплава, поскольку чугун технологичнее в обработке и дешевле алюминия. Серый чугун обладает хорошими литейными качествами, прочен и легко обрабатывается. Отливки из серого чугуна не склонны к короблению и образованию трещин.

Если чугунные блоки отливаются в земляные формы, то блоки из алюминиевого сплава изготовляются литьем под давлением в разборные металлические формы. При этом обеспечивается высокая точность и производительность. Существенным недостатком алюминиевых блоков является их повышенное тепловое расширение, что в процессе работы может вызвать искажение форм. Основное достоинство – малая масса по сравнению с чугунными блоками.
Вероятность деформации блок-картера при эксплуатации во многом определяется технологией его изготовления.

Искажение формы (деформация) может произойти при неудачном выборе компоновочной схемы КШМ двигателя, неравномерном нагреве, а также вследствие механической и особенно термической перегрузки двигателя при работе.
Кроме того, это может произойти при сборке двигателя, если не соблюдать рекомендуемый порядок и моменты затяжки болтов и гаек крепления головки блока цилиндров и крышек коренных подшипников.

Читать еще:  Экзаменационная работа на тему то системы питания двигателя

Недопустимые деформации элементов блок-картера вплоть до разрушения могут произойти при его заправке холодной охлаждающей жидкостью при разогретом двигателе, а также при замерзании воды в рубашке охлаждения.
Заправка системы охлаждения горячего двигателя холодной охлаждающей жидкостью может привести не только к деформации и разрушению базовых деталей – блока цилиндров, головки блока, но также вызвать повреждение элементов резьбовых соединений, изменение взаимного положения деталей и нарушение технологических регулировок.

Устройство двигателя автомобиля

Рассмотрим устройство двигателя автомобиля и его базовые части: блок, цилиндр, поршень, поршневые кольца и шатун.

Для будущего автомобильного механика, диагноста устройство двигателя автомобиля является одной из ключевых тем. Именно двигатель обеспечивает транспортное средство энергией, которая нужна для его движения.

Чаще всего механизм запуска устройства двигателя автомобиля возможен за счёт применения бензина или дизеля (дизельного топлива). Сгораемое внутри мотора топливо продуцирует тепло, что приводит к увеличению температуры газов внутри цилиндра двигателя и росту давления газов. Подвижные части двигателя под их влиянием вступают в работу, и тепловая энергия преображается в механическую.

Базовые части двигателя

Металлическую основу мотора, остов называют блоком. Это корпусная деталь. Именно к блоку крепятся механизмы и отдельные части мотора и его систем.

Иногда можно встретиться с термином «блок», иногда – с терминами «блок двигателя», «блок цилиндров». Всё это одно и тоже.
Блок двигателя берёт на себя серьёзные нагрузки. Поэтому контроль качества при его изготовлении должен быть предельно высок. Огромное внимание уделяется как материалу, так и уровню точности изготовления детали. Для производства используются высокоточные станки.

Раньше блоки изготавливали из перлитного чугуна с легирующими добавками. Популярность чугуна при изготовлении блоков легко объяснима тем, что материал износостоек, стабилен по своим свойствам, малочувствителен к перегреву, адаптивен к ремонту. Сейчас некоторые производители также выпускают блоки из алюминиевого, магниевого сплава. В этом случае есть выигрыш, связанный с весом мотора. Это очень актуально для блоков моторов спорткаров.

Цилиндр

Рядом с понятием «блок» стоит понятие «цилиндр». Под цилиндром подразумевается цилиндрическое отверстие, высверленное в блоке. То есть это рабочая камера объёмного вытеснения.

Уплотнение верхней стороны цилиндра обеспечивает головка. Именно в ней находятся:

  • Клапаны. Обеспечивают (в процессе открытия-закрытия) поступление в цилиндр воздуха, топливовоздушной смеси. Также среди функций клапанов обеспечивают очистку камеры сгорания цилиндра от отработавших (выхлопных) газов. Закрытие клапанов и удержание их в таком состоянии обеспечивают клапанные пружины.
  • Распредвалы (элементы привода клапанов). От них зависит то, как открываются клапаны, сколько времени они находятся в открытом состоянии
  • Механизмы привода клапанов. Функция идентична. И, как видно, из названия – это привод клапанов. Но сами механизмы могут быть разными. Всё зависит от мотора: например, бензиновый, дизельный.

Цилиндр играет роль направляющего для поршня.

Поршень, поршневые кольца и шатун

Цилиндрическая деталь или совокупность деталей, которая преобразует энергию горения топливо в механическую энергию, называется поршнем.

В проточках на боковой поверхности поршня вставлены поршневые кольца. Благодаря им между поршнем и стенкой цилиндра создаётся уплотнение. Задача поршневых колец заключается в создании барьера для перетекания из камеры сгорания в картер коленчатого вала газов.

Среди задач поршня:

  • Оказание силового воздействия на шатун.
  • Отвод тепла от камеры сгорания.
  • Герметизация камеры сгорания.

Подвижное соединение между поршнем и коленчатым валом обеспечивает шатун. Именно шатун передаёт силу движущегося поршня к вращающемуся коленчатому валу.

Коленчатый вал

Коленчатый вал – это важная составляющая кривошипно-шатунного механизма. Кривошип коленчатого вала создает возвратно-поступательное движение поршня через шатун (подвижный элемент), то есть возвратно-поступательное движение поршня превращается в крутящий момент. Физически коленвал расположен в нижней части двигателя. Снизу коленвал прикрыт картером – самой внушительной неподвижной и полой частью двигателя, закреплённой на блоке сбоку. Визуально картер напоминает поддон.

Конструкция коленчатого вала состоит из несколько шеек (коренных и шатунных). Они соединены щеками, соединенных между собой щеками. Место перехода от шейки к щеке всегда является самым нагруженным у коленвала.

На коленчатый вал приходятся переменные нагрузки от сил давления газов.
Для того, чтобы не возникало осевых перемещений коленчатого вала, используется упорный подшипник скольжения. Он устанавливается на одной из шеек (средней или крайней).

Несколько важных терминов, касающихся устройства двигателя автомобиля

Камера сгорания –замкнутое пространство, где осуществляется воспламенение и горение топливовоздушной смеси. Сверху камера сгорания ограничена нижней поверхностью головки цилиндра, сбоку – стенками цилиндра, снизу –днищем поршня.
Толкатели клапанов, подъёмники –промежуточное звено, необходимое для передачи движения от распределительного вала к остальным частям механизма привода клапанов.
Коромысла (рокеры). Детали двигателя, функции которых заключаются в передаче движения от распределительного вала к клапанам.

Маховик. Деталь, ответственная за обеспечение равномерного вращения коленчатого вала. На цилиндрической устанавливается зубчатый венец. Он помогает провести пуск электростартера.

На схеме представлено расположение основных частей двигателя при рассмотрении его со стороны его задней части. На фланце коленчатого вала видны отверстия под болты, с помощью которых к фланцу крепится маховик с зубчатым венцом, или платина привода гидравлического трансформатора автоматической трансмиссии. Источник: Ford.

Автомобильные двигатели

Большинство двигателей автомобилей многоцилиндровые. Это значит при работе используется два или несколько цилиндров и два или несколько поршней.

Читать еще:  Что меняют на то газели с двигателем камминз

Автопром выпускает машины с 2-; 3-; 4-; 5-; 6; 8-; 10- и 12-цилиндровыми двигателями.
Чем больше цилиндров у мотора, тем больше возможностей для увеличения мощности двигателя. Если нужен двигатель, предназначенный для езды по бездорожью либо машина, развивающая сверхвысокие скорости, актуально именно устройство двигателя автомобиля, ориентированное на большое количество цилиндров. Устройство двигателя с большим количеством цилиндров обеспечивает отличную равномерность вращения коленчатого вала, ведь угол поворота коленчатого вала при 10, 12 цилиндрах – очень небольшой.

Но у 2-х цилиндровых двигателей есть другое преимущество: самые лучшие показатели топливной эффективности.

Циклы двигателя

Устройство двигателя автомобиля всегда рассматривается в купе с его рабочим циклом.
Физически цикл – это периодически повторяющиеся процессы в каждом его цилиндре. Достаточно подробно разница между работой четырёхтактного и двухтактного двигателя отражена в нашей статье о двигателе внутреннего сгорания.

Сегодня мы остановимся на работе четырёхтактных моторов. Именно по четырёхтактному циклу работает большинство современных автодвигателей. Хотя сам принцип двигателя был изобретён Николаусом Отто в 19-м веке.

Поршень четырёхтактного двигателя совершает нисходящее и восходящее движение. Эта работа укладывается в один оборот коленчатого вала. При втором обороте коленчатого вала вновь повторяют эти движения.

1. Такт впуска (всасывания). Поступление в цилиндр двигателя свежего заряда: воздуха- от дизельного мотора бензинового двигателя с прямым вспрыском или топливовоздушной смеси, от газово-топливного двигателя, мотора с распределенным или центральным впрыском топлива, или газо-топливные двигатели). В результате разрежения, созданного поршнем, перепад давления между давлением в цилиндре и давление окружающего воздуха, заряд втягивается непосредственно в цилиндр.

2. Такт сжатия. Шатун толкает поршень. Поршень сжимает газообразный свежий заряд в цилиндре. Устройство дизельного двигателя настроено на то, чтобы температура сжатых газов должна достигла температуры воспламенения топлива. Если же речь идёт об устройстве газо-топливного, бензинового двигателя температура в конце такта сжатия достигать температуры воспламенения топлива не должна. Воспламенение производится от электроискрового разряда свечи зажигания.

3. Такт рабочего хода. Температура газов в цилиндре снижается, энергия горящих газов преобразуется в механическую энергию.

4. Такт выпуска отработавших газов. Поршень движется снизувверх. Отработавшие газы выходят из цилиндра через выпускной клапан.

Устройство двигателя автомобиля устроено так, что четыре такта повторяются циклично. Посредством маховика механическая энергия превращается во вращательное движение коленвала.

Модульное обучение автоосновам доступно при изучении электронных программ по профессиям. Удобный дистанционный формат обучения.

Тест 2. Кривошипно-шатунный механизм

1. KШM ПРЕДНАЗНАЧЕН ДЛЯ ПРЕОБРАЗОВАНИЯ ПОСТУПАТЕЛЬНОГО ДВИЖЕНИЯ ШАТУНА ВО_____ ДВИЖЕНИЕ ВАЛА.

2. ШАТУН СОЧЛЕНЕН С ПОРШНЕМ ПРИ ПОМОЩИ ПОРШНЕВОГО ______.

Выберите номера всех правильных ответов

3. МАТЕРИАЛ ИЗГОТОВЛЕНИЯ ГОЛОВОК БЛОКА ЦИЛИНДРОВ:

2) углеродистая сталь;

3) легированная сталь;

4) алюминиевый сплав.

5) высокопрочная легированная сталь.

МАТЕРИАЛ ИЗГОТОВЛЕНИЯ ШАТУНОВ

7) углеродистая сталь;

8) легированная сталь;

9) алюминиевый сплав;

10) высокопрочная легированная сталь.

1) уплотнение камеры сгорания;

2) ограничение частоты вращения;

3) смещение оси поршневого пальца относительно оси цилиндра

С ЦЕЛЬЮ ИСКЛЮЧЕНИЯ

4) разноса двигателя;

5) прорыва газов в картер;

6) стука поршня о стенку цилиндра.

5. ГИЛЬЗА ЦИЛИНДРА МОКРОГО ТИПА, ТАК КАК ОНА:

1) контактирует с топливом;

2) омывается горячими газами;

3) смазывается моторным маслом;

4) запрессовывается в блок со смазкой;

5) омывается охлаждающей жидкостью.

6. БАЗОВОЙ ДЕТАЛЬЮ КШМ И ВСЕГО ДВИГАТЕЛЯ ЯВЛЯЕТСЯ:

3) головка блока;

4) коленчатый вал;

5) блок цилиндров.

7. ПОДВИЖНЫЕ ДЕТАЛИ КШМ:

5) головка блока;

6) поддон картера;

7) блок цилиндров;

8) коленчатый вал;

9) поршневой палец;

10) пружины клапанов;

11) поршневые кольца;

12) прокладка головки блока.

8. НЕПОДВИЖНЫЕ ДЕТАЛИ КШМ:

5) головка блока;

6) поддон картера;

7) блок цилиндров;

8) коленчатый вал;

9) поршневой палец;

10) пружины клапанов;

11) поршневые кольца;

12) прокладка головки блока.

9. ПРОРЕЗИ НА ЮБКЕ ПОРШНЯ ДЛЯ:

1) снижения нагрева;

2) уменьшения массы поршня;

3) увеличения прочности поршня;

4) компенсации теплового расширения;

5) отвода масла со стенок цилиндра.

10. МАССЫ РАЗЛИЧНЫХ ПОРШНЕЙ ДВИГАТЕЛЯ НЕ ДОЛЖНЫ ОТЛИЧАТЬСЯ БОЛЕЕ ЧЕМ НА:

11. ЗАМКИ ТРЕХ КОМПРЕССИОННЫХ КОЛЕЦ РАСПОЛАГАЮТ ПОД УГЛОМ ДРУГ К ДРУГУ:

12. СПОСОБЫ УПЛОТНЕНИЯ ГИЛЬЗЫ ЦИЛИНДРА

1) прокладкой головки блока;

2) асбестовым шнуром;

3) резиновыми кольцами;

4) самоподжимным сальником;

5) медным кольцом.

13. МАТЕРИАЛ АНТИФРИКЦИОННОГО СПЛАВА ВКЛАДЫШЕЙ КОЛЕНЧАТОГО ВАЛА:

3) свинцовистая бронза;

4) оловянистый алюминиевый сплав.

14. НОМЕРА ПОЗИЦИИ И НАЗВАНИЯ ЭЛЕМЕНТА КОЛЕНЧАТОГО ВАЛА (РИС. 2.1):

IV. Шатунная шейка;

V. Коренная шейка.


Рис. 2.1. Коленчатый вал

Выберите номера всех правильных ответов

15. ОТВЕРСТИЯ В КОЛЕНЧАТОМ ВАЛУ ВЫПОЛНЯЮТСЯ ДЛЯ ПОДАЧИ К ШАТУННЫМ ПОДШИПНИКАМ:

4) горючей смеси;

5) картерных газов;

6) сжиженного газа.

16. КОЛЕНЧАТЫЙ ВАЛ ФИКСИРУЕТСЯ ОТ ОСЕВОГО СМЕЩЕНИЯ:

1) стопорной шайбой;

2) упорными кольцами;

3) упорными вкладышами;

4) упорными шарикоподшипниками

5) центральной части;

6) носка или хвостовика.

17. МАТЕРИАЛ БЛОКА ЦИЛИНДРОВ:

4) алюминиевый сплав.

18. ТЕМПЕРАТУРА (» с) НАГРЕВА ПОРШНЯ В МАСЛЕ ПРИ ЕГО СБОРКЕ С ПАЛЬЦЕМ:

19. МАСЛОСЪЕМНОЕ КОЛЬЦО СЛУЖИТ ДЛЯ:

1) упрочения поршня;

2) снижения детонации;

3) уплотнения цилиндра;

4) уменьшения массы поршня;

5) снятия излишка масла со стенок;

6) уменьшения расхода масла на угар.

20. НОМЕРА ПОЗИЦИИ И НАЗВАНИЯ ЭЛЕМЕНТА ПОРШНЯ (РИС. 2.2):

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector