Autoservice-mekona.ru

Автомобильный журнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что такое векторное и скалярное управление асинхронным двигателем

Скалярное и векторное управление асинхронными двигателями — в чем различие?

Асинхронный двигатель — двигатель переменного тока, в котором токи в обмотках статора создают вращающееся магнитное поле. Это магнитное поле индуктирует токи в обмотке ротора и, действуя на эти токи, увлекает за собой ротор.

Однако для того, чтобы во вращающемся роторе вращающееся магнитное поле статора индуктировало токи, ротор в своем вращении должен немного отставать от вращающегося, поля статора. Поэтому в асинхронном двигателе скорость вращения ротора всегда немного меньше скорости вращения магнитного поля (которая определяется частотой переменного тока, питающего двигатель).

Отставание ротора от вращающегося магнитного поля статора (скольжение ротора) тем больше, чем больше нагрузка двигателя. Отсутствие синхронизма между вращением ротора и магнитного поля статора — характерная черта асинхронного двигателя, от которой и происходит его название.

Вращающееся магнитное поле в статоре создается с помощью обмоток, питаемых токами, сдвинутыми по фазе. Обычно для этой цели применяется трехфазный переменный ток. Существуют также однофазные асинхронные двигатели, в которых сдвиг фаз между токами в обмотках создается включением различных реактивных сопротивлений в обмотки.

С целью регулировки угловой скорости вращения ротора, а также крутящего момента на валу современных бесщеточных двигателей, применяют либо векторное, либо скалярное управление электроприводом.

Более всего распространение получило скалярное управление асинхронным двигателем, когда для управления например скоростью вращения вентилятора или насоса, достаточно удерживать постоянной скорость вращения ротора, для этого хватает сигнала обратной связи от датчика давления или от датчика скорости.

Принцип скалярного управления прост: амплитуда питающего напряжения является функцией частоты, причем отношение напряжения к частоте оказывается приблизительно постоянным.

Конкретный вид этой зависимости связан с нагрузкой на валу, однако принцип остается таковым: повышаем частоту, а напряжение при этом пропорционально повышается в зависимости от нагрузочной характеристики данного двигателя.

В итоге магнитный поток в зазоре между ротором и статором поддерживается почти постоянным. Если же отношение напряжения к частоте отклонить от номинального для данного двигателя, то двигатель либо перевозбудится, либо недовозбудится, что приведет к потерям в двигателе и к сбоям в рабочем процессе.

Таким образом скалярное управление позволяет добиться почти постоянного момента на валу в рабочем диапазоне частот независимо от частоты, однако на низких скоростях момент все же снижается (чтобы этого не произошло, необходимо повысить отношение напряжения к частоте), поэтому для каждого двигателя имеет место строго определенный рабочий диапазон скалярного управления.

Кроме того, невозможно построить систему скалярного регулирования скорости без датчика скорости, установленного на валу, ибо нагрузка сильно влияет на отставание реальной скорости вращения ротора от частоты питающего напряжения. Но даже с датчиком скорости при скалярном управлении не получится с высокой точностью регулировать момент (по крайней мере так, чтобы это было экономически целесообразно).

В этом и заключаются недостатки скалярного управления, объясняющие относительную немногочисленность сфер его применения, ограниченных в основном обычными асинхронными двигателями, где зависимость скольжения от нагрузки не является критичной.

Для избавления от названных недостатков, в далеком 1971 году инженеры компании Сименс предложили использовать векторное управление двигателем, при котором контроль осуществляется с обратной связью по величине магнитного потока. Первые системы векторного управления содержали датчики потока в двигателях.

Сегодня подход к данному методу несколько иной: математическая модель двигателя позволяет рассчитывать скорость вращения ротора и момент на валу в зависимости от текущих токов фаз (от частоты и величин токов в обмотках статора).

Этот более прогрессивный подход предоставляет возможность независимо и почти безынерционно регулировать как момент на валу, так и скорость вращения вала под нагрузкой, ибо в процессе управления учитываются еще и фазы токов.

Некоторые более точные системы векторного управления оснащены схемами обратной связи по скорости, при этом системы управления без датчиков скорости именуются бездатчиковыми.

Так, в зависимости от области применения того или иного электропривода, его система векторного управления будет иметь свои особенности, свою степень точности регулировки.

Когда требования к точности регулировки скорости допускают отклонение до 1,5%, а диапазон регулировки — не превышает 1 к 100, то бездатчиковая система вполне подойдет. Если же требуется точность регулировки скорости с отклонением не более 0,2%, а диапазон сводится до 1 к 10000, то необходимо наличие обратной связи по датчику скорости на валу. Наличие датчика скорости в системах векторного управления позволяет точно регулировать момент даже при низких частотах до 1 Гц.

Итак, векторное управление дает следующие преимущества. Высокую точность управления скоростью вращения ротора (и без датчика скорости на нем) даже в условиях динамически изменяющейся нагрузки на валу, при этом рывков не будет. Плавное и ровное вращение вала на малых скоростях. Высокий КПД в силу низких потерь в условиях оптимальных характеристик напряжения питания.

Не обходится векторное управление без недостатков. Сложность вычислительных операций. Необходимость задавать исходные данные (параметры регулируемого привода).

Для группового электропривода векторное управление принципиально не годится, здесь лучше подойдет скалярное.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Ранее на эту тему: Электропривод

Подписывайтесь на наш канал в Telegram!

Просто пройдите по ссылке и подключитесь к каналу.

Не пропустите обновления, подпишитесь на наши соцсети:

Способы управления асинхронным двигателем

Электропривод сегодня является основой большинства подъемно-транспортных, обрабатывающих комплексов. Одним из способов их плавной работы является векторное управление асинхронным двигателем, преобразующим электрическую энергию в механическую – вращение приводного вала и связанных с ним механизмов.

Что такое асинхронный двигатель?

Прежде чем переходить к модели, алгоритмам и системам управления электроприводом, нужно точно знать, что он собой представляет. Это позволяет выявить в его цепи такие моменты, которые можно будет использовать для организации плавного изменения ключевых характеристик (частота/скорость вращения, напряжение). Соответственно, можно определить параметры контроллера, разработать технологические карты для его размещения в шкафу и обслуживания.

Читать еще:  Бензин в масле двигателя на гольфе причины

Работа любого асинхронного двигателя базируется на возбуждении на контактных обмотках магнитного поля при подаче электричества от шкафа управления. Оно возникает на статоре – неподвижной части двигателя, которая состоит из кольцевого сердечника (магнитопровода), собранного из отдельных металлических пластин. Каждая из них имеет концентрические пазы на внутренней стороне кольца, которые при совмещении образуют продольные пазы. Они служат для намотки проволоки, составляющей основу статорной обмотки.

Также асинхронный двигатель имеет подвижную часть – ротор, совмещенный с приводным валом. Он также имеет пластинчатый сердечник с пазами, но уже на внешней стороне. Вместо проволоки используются медные прутки, которые по краям замыкаются пластинами (такой вариант двигателя называется с короткозамкнутым ротором).

За счет того, что частоты вращения магнитных полей статора и ротора отличаются, в обмотках последнего за счет индукции наводится электрический ток. Он, в свою очередь, побуждает электромагнитную силу, приводящую ротор в движение (вращение). Разница частот обычно называется скольжением. Его величина составляет порядка 2…10%.

Как можно управлять скоростью вращения двигателя?

Очевидно, что двигатель в обычном режиме работы от сети (электрического шкафа) имеет стандартную скорость/частоту вращения. Это ограничивает прямое его использование, вынуждая применять различные редукторные механизмы для понижения частоты до требуемой. Но даже тогда нет возможности динамично менять обороты, а вместе с ними, мощность, подачу, поскольку все равно остаются фиксированными частоты на выходе из двигателя и редуктора. Для расширения существующих рамок используют разные способы управления (частотные, импульсные, фазные и т. д), которые можно разделить на две большие группы:

  1. Скалярное. Как правило, используется на приводных двигателях компрессорных, вентиляторных, насосных и прочих механизмов, где требуется контроль скорости вращения или любого другого параметра, связанного с датчиками,
  2. Векторное. Это усовершенствованная концепция, которая предполагает раздельный, независимый контроль, изменение момента и магнитного потока. Токосцепление ротора поддерживается на постоянном уровне, что позволяет сохранить максимальный показатель момента.

Управление асинхронным двигателем

Отличие скалярного от векторного управления как раз заключается в возможности осуществления контроля возбуждения (потока). Фактически, он представляется как двигатель постоянного тока, имеющий независимые друг от друга обмотки. Такой подход позволяет создать подобную математическую модель системы работы контроллера.

Формы и схема векторного управления

Все существующие на сегодня системы векторного управления работой двигателей можно разделить на две группы:

  1. Датчиковые. Блок управления работой двигателя имеет с ним обратную связь по скорости, с помощью расположения на валу соответствующих датчиков,
  2. Бездатчиковые. Это системы, которые работают без датчиков скорости на основном валу.

Датчиковые системы являются более сложными, так как точность контроля составляет 1:10000. Бездатчиковые системы работают на уровне не более 1:100. Все частотники с учетом уровня создаваемых помех устанавливаются в центральных или отдельных шкафах.

Если представить все выше сказанное как наглядную схему, то получится нечто следующее:

Здесь можно видеть такие ключевые компоненты системы управления, как:

  • АД – собственно, асинхронный двигатель (объект контроля),
  • БРП – логический блок регуляторов для переменных уравнения,
  • БВП – логический блок, отвечающий за вычисления по переменным,
  • БЗП – блок, задающий значения переменных,
  • ДС – датчик скорости на валу двигателя,
  • АИН ШИМ – блок амплитудно-импульсной/широтно-импульсной модуляции.

То, что на схеме отображено в виде блоков, на практике является всего лишь параметрическими элементами цепи управления, которая реализуется на микроконтроллере. Соответственно, сам контроллер и сопутствующие исполнительные механизмы монтируются в электрический шкаф. Для правильного монтажа разрабатывается технологическая карта.

Управление частотными контроллерами

Современные преобразователи частоты тока/напряжения работают и по скалярному, и по векторному варианту, используя параметрические математические модели, реализованные в программном коде встроенного микроконтроллера. Частотники электронного типа работают на тиристорных мостовых схемах и включают следующие основные компоненты:

  • Выпрямитель – тиристорный или транзисторный мост, преобразующий переменный ток в постоянный,
  • Инвертор – блок АИМ/ШИМ, работающий по обратному принципу, то есть преобразующий постоянный ток в переменный.

Поскольку такой переход так или иначе влияет на форму графика выходного напряжения, то блочный контроллер/частотник может использовать в схеме дросселя и специальные ЕМС фильтры. Последние применяют для снижения интенсивности электромагнитных помех.

Управление частотными контроллерами

Центральный контроллер обеспечивает параметрическое управление схемой, а также вспомогательными задачами, например, диагностикой состояния, защитой от перегрузок и т. п. Сам частотник обычно монтируется в отдельный шкаф, чтобы уменьшить электромагнитные помехи на оборудование.

В целом, векторное управление, организованное на современном контроллере и преобразователе частоты, позволяет добиться плавного регулирования ключевых величин, а также побочных параметров работы оборудования. Ввиду наличия электромагнитных помех при работе, частотники обычно размещают отдельно от основного электрического шкафа.

Что такое векторное и скалярное управление асинхронным двигателем

Каталог товаров

  • MITSUBISHI ELECTRIC
  • LOVATO ELECTRIC
  • MOELLER
  • ABB
  • Allen Bradley Rockwell Automation
  • Siemens
  • Schneider-Electric
  • ПРОВЕНТО
  • ФАБЕР
  • КонтрАвт
  • Преобразователи интерфейсов
  • EURADRIVES
  • Частотники и УПП Combarco
  • Частотники Lenze
  • Частотники Hyundai
  • Частотники ELM
  • Частотники Invertek Drives
  • POWTRAN
  • THINGET
  • GESTRA
  • Hyundai выключатель
  • Кондиционеры McQuay
  • LS Industrial Systems

Векторное управление является методом управления синхронными и асинхронными двигателями, не только формирующим гармонические токи (напряжения) фаз (скалярное управление), но и обеспечивающим управление магнитным потоком ротора. Первые реализации принципа векторного управления и алгоритмы повышенной точности нуждаются в применении датчиков положения (скорости) ротора.
В общем случае под «векторным управлением» понимается взаимодействие управляющего устройства с так называемым «пространственным вектором», который вращается с частотой поля двигателя.

Читать еще:  Chevrolet aveo какое масло заливать в двигатель

Математический аппарат векторного управления

Для СД и АД принцип векторного управления можно сформулировать следующим образом:
Необходимо определить направление и угловое положение вектора потокосцепления ротора двигателя. Ортогональные оси d,q (в отечественной литературе для асинхронных машин применяют оси x,y) направляют так, что ось d совпадает с направлением вектора потокосцепления ротора. Вектор напряжения статора двигателя регулируют в осях d,q. Составляющая напряжения по оси d регулирует величину тока статора по оси d.
Изменяя ток статора по оси d следует добиваться требуемого значения амплитуды вектора потокосцепления ротора. Ток статора по оси q, контролируемый напряжением по этой оси, определит момент развиваемый двигателем. В таком режиме работы СД и АД подобны двигателю постоянного тока, так по оси d формируется поле машины (обмотка возбуждения для двигателя постоянного тока, т.е. индуктор), а ток по оси q задаёт момент (якорная обмотка двигателя постоянного тока).
Векторное управление может быть реализовано не только при определении направления и углового положения вектора потокосцепления ротора (система «Transvektor»). Практический интерес представляют аналогичные устройства с управлением по вектору главного потокосцепления двигателя, которые в нашей стране стали именоваться векторными системами. Указанные устройства управления имеют свои особенности. Применение вектора потокосцепления ротора теоретически обеспечивает большую перегрузочную способность АД. При использовании устройства управления по вектору главного потокосцепления и стабилизации модуля главного потокосцепления двигателя во всех режимах работы исключается чрезмерное насыщение магнитной системы, упрощается структура управления АД. Для составляющих вектора главного потокосцепления (по осям α, β статора) возможно прямое измерение, например, с помощью датчиков Холла, устанавливаемых в воздушном зазоре двигателя.
Питание АД и СД в режиме векторного управления осуществляется от инвертора, который может обеспечить в любой момент времени требуемые амплитуду и угловое положение вектора напряжения (или тока) статора. Измерение амплитуды и положение вектора потокосцепления ротора производится с помощью наблюдателя (математический аппарат позволяющий восстанавливать неизмеряемые параметры системы).
Для векторного управления асинхронным двигателем следует сначала привести его к упрощенной двухполюсной машине, которая имеет две обмотки на статоре и роторе, в соответствии с этим имеется системы координат связанные со статором, ротором и полем.

Варианты режимов работы векторного управления

Векторное управление подразумевает наличие в звене управления математической модели (далее — ММ) регулируемого электродвигателя. В зависимости от условий эксплуатации электропривода возможно управление электродвигателем как в режимах с обычной точностью, так и в режимах с повышенной точностью отработки задания на скорость или момент.

Точность математической модели электродвигателя

В связи с вышесказанным представляется возможным произвести классификационное разделение режимов управления по точности математической модели (ММ) электродвигателя, используемой в звене управления:
— использование ММ без дополнительных уточняющих измерений устройством управления параметров электродвигателя (используются лишь типовые данные двигателя, введенные пользователем)
— использование ММ с дополнительными уточняющими измерениями устройством управления параметров электродвигателя (т.е. активных и реактивных сопротивлений статора/ротора, напряжения и тока двигателя)

Использование датчика скорости электродвигателя

В зависимости от наличия или отсутствия датчика обратной связи по скорости (датчика скорости) векторное управление можно разделить на:
управление двигателем без датчика скорости — при этом устройством управления используются данные ММ двигателя и значения, полученные при измерении тока статора и/или ротора
управление двигателем с датчиком скорости — при этом устройством используются не только значения, полученные при измерении тока статора и/или ротора электродвигателя (как в предыдущем случае), но и данные о скорости (положении) ротора от датчика, что в некоторых задачах управления позволяет повысить точности отработки электроприводом задания скорости (положения).

Векторное управление

Векторное управление является методом управления синхронными и асинхронными двигателями, не только формирующим гармонические токи (напряжения) фаз (скалярное управление), но и обеспечивающим управление магнитным потоком ротора. Первые реализации принципа векторного управления и алгоритмы повышенной точности нуждаются в применении датчиков положения (скорости) ротора.

В общем случае под «векторным управлением» понимается взаимодействие управляющего устройства с так называемым «пространственным вектором», который вращается с частотой поля двигателя.

Содержание

  • 1 Причины появления
  • 2 Математический аппарат векторного управления
  • 3 Варианты режимов работы векторного управления
    • 3.1 Точность математической модели электродвигателя
    • 3.2 Использование датчика скорости электродвигателя
  • 4 Терминологические нюансы
  • 5 Ссылки
  • 6 Литература
  • 7 См. также

Причины появления [ править ]

Основной причиной появления векторного управления является, то что асинхронный двигатель с короткозамкнутым ротором (АДКЗ) — самый массовый и дешёвый в производстве двигатель, надёжный и наименее требовательный в эксплуатации (в конструкции нет механических коллекторов, контактных колец) плохо поддаётся регулированию скорости, поэтому он первоначально применялся для нерегулируемых приводов, либо для приводов с механической регулировкой (с помощью коробки передач); специальные многоскоростные АДКЗ позволяли только ступенчато изменять скорость (от двух до пяти ступеней), но их стоимость была гораздо выше, чем обычных, кроме того, требовалась станция управления для таких двигателей, которая дополнительно сильно удорожала систему управления, при этом было невозможно автоматически поддерживать скорость двигателя при изменении нагрузки. Позже были разработаны методы управления скоростью АДКЗ (скалярное управление), но в переходных процессах при скалярном регулировании потокосцепление ротора изменяется (при изменении токов статора и ротора), что приводит к снижению темпа изменения электромагнитного момента и ухудшению характеристик в динамике.

С другой стороны двигатель постоянного тока (ДПТ) при большей его стоимости и эксплуатационных затратах и меньшей надёжности (имеется механический коллектор) просто поддаётся управлению, при этом регулировка может осуществляться как изменением напряжения на якоре с постоянным номинальным потоком возбуждения (первая зона регулирования) так и изменением напряжения на обмотке возбуждения (ослабление потока возбуждения) с постоянным номинальным напряжением на якоре (вторая зона регулирования). При этом обычно регулирование ведётся сначала в первой зоне , а при необходимости дальнейшего регулирования во второй зоне (с постоянной мощностью).

Читать еще:  Большие обороты двигателя на холостом ходу мерседес

Идеей векторного управления было создание такой системы управления АДКЗ, в которой, подобно ДПТ можно раздельно управлять моментом и магнитным потоком, при этом поддерживается на постоянном уровне потокосцепление ротора и значит изменение электромагнитного момента будет максимальным.

Математический аппарат векторного управления [ править ]

Для СД и АД принцип векторного управления можно сформулировать следующим образом: Первоначально система дифференциальных линейных уравнений трёхфазного двигателя преобразуется в систему уравнений обобщённой двухфазной машины, которая имеет две фазы (расположенные пространственно под 90° относительно друг друга) на статоре и две фазы на роторе, также взаимно расположенных. Затем все вектора, описываемые данной системой проецируются на произвольно вращающуюся ортогональную систему координат, с началом на оси ротора, при этом наибольшая простота уравнений получается при вращении системы координат со скоростью поля машины, кроме того при таком представлении уравнения вырождаются и становятся похожими на уравнения ДПТ, проецирование всех векторов на направление поля машины отражается в названии этого метода — «ориентирование по полю». Фактически вторым этапом формирования величин, ориентированных по полю — это замена обмоток двухфазной обобщённой машины (две на статоре и две на роторе) одной парой взаимно перпендикулярных обмоток, вращающихся синхронно с полем. Кроме характеристик, близких к характеристикам ДПТ, АДКЗ с ориентированием по полю имеет предельно допустимое быстродействие при управлении моментом в режиме поддержания постоянства потокосцепления.

Уравнения электромагнитых процессов, записанные относительно токов статора и потокосцеплений ротора в синхронной ортогональной системе координат, ориентированной по вектору потокосцепления ротора имеют вид:

— коэффициент рассеяния; — соответственно индуктивности статора, ротора и взаимная; — соответственно активные сопротивления статора и ротора; — потокосцепление ротора; — частота вращения вектора потокоцепления ротора; — электрическая частота вращения ротора; — проекции токов на оси d и q; — постоянная времени роторной цепи.

При этом могут быть два варианта метода:

  • ориентирование по полю ротора
  • ориентирование по полю главного потокосцепления

При практической реализации первого метода необходимо определить направление и угловое положение вектора потокосцепления ротора двигателя. Ортогональные оси d, q (в отечественной литературе для асинхронных машин применяют оси x, y) направляют так, что ось d совпадает с направлением вектора потокосцепления ротора. Вектор напряжения статора двигателя регулируют в осях d, q. Составляющая напряжения по оси d регулирует величину тока статора по оси d.

Изменяя ток статора по оси d следует добиваться требуемого значения амплитуды вектора потокосцепления ротора. Ток статора по оси q, контролируемый напряжением по этой оси, определит момент развиваемый двигателем. В таком режиме работы характеристики СД и АД подобны двигателю постоянного тока, так по оси d формируется поле машины (обмотка возбуждения для двигателя постоянного тока, то есть индуктор), а ток по оси q задаёт момент (якорная обмотка двигателя постоянного тока). Управление двигателем по данному методу теоретически обеспечивает большую перегрузочную способность АДКЗ, но при этом невозможно напрямую определить вектор потокосцепления ротора.

Данный метод векторного управления был первоначально реализован в системе «Transvektor» фирмы «Сименс».

Устройства с управлением по вектору главного потокосцепления двигателя, в нашей стране стали именоваться векторными системами. При использовании устройства управления по вектору главного потокосцепления и стабилизации модуля главного потокосцепления двигателя во всех режимах работы исключается чрезмерное насыщение магнитной системы, упрощается структура управления АД. Для составляющих вектора главного потокосцепления (по осям α, β статора) возможно прямое измерение, например, с помощью датчиков Холла, устанавливаемых в воздушном зазоре двигателя.

Питание АД и СД в режиме векторного управления осуществляется от инвертора, который может обеспечить в любой момент времени требуемые амплитуду и угловое положение вектора напряжения (или тока) статора. Измерение амплитуды и положение вектора потокосцепления ротора производится с помощью наблюдателя (математический аппарат позволяющий восстанавливать неизмеряемые параметры системы).

Варианты режимов работы векторного управления [ править ]

Векторное управление подразумевает наличие в звене управления математической модели (далее — ММ) регулируемого электродвигателя. В зависимости от условий эксплуатации электропривода возможно управление электродвигателем как в режимах с обычной точностью, так и в режимах с повышенной точностью отработки задания на скорость или момент.

Точность математической модели электродвигателя [ править ]

В связи с вышесказанным представляется возможным произвести классификационное разделение режимов управления по точности ММ электродвигателя, используемой в звене управления:

  • использование ММ без дополнительных уточняющих измерений устройством управления параметров электродвигателя (используются лишь типовые данные двигателя, введенные пользователем)
  • использование ММ с дополнительными уточняющими измерениями устройством управления параметров электродвигателя (то есть активных и реактивных сопротивлений статора/ротора, напряжения и токадвигателя)

Использование датчика скорости электродвигателя [ править ]

В зависимости от наличия или отсутствия датчика обратной связи по скорости (датчика скорости) векторное управление можно разделить на:

  • управление двигателем без датчика скорости — при этом устройством управления используются данные ММ двигателя и значения, полученные при измерении токастатора и/или ротора
  • управление двигателем с датчиком скорости — при этом устройством используются не только значения, полученные при измерении токастатора и/или ротораэлектродвигателя (как в предыдущем случае), но и данные о скорости (положении) ротора от датчика, что в некоторых задачах управления позволяет повысить точности отработки электроприводом задания скорости (положения).

Терминологические нюансы [ править ]

Поскольку принцип векторного управления был изобретен в ФРГ, то в русскоязычной литературе нередко встречается термин «векторное регулирование», являющийся калькой с немецкого «Vektorregierung». Такое определение нельзя считать ошибочным, однако по установившемся нормам русского технического языка более правильным будет использование именно термина «векторное управление». Кроме того часто данный метод называют также «принципом ориентирования по полю», что также является буквальным переводом с немецкого «Prinzip Feldorientir».

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector