Autoservice-mekona.ru

Автомобильный журнал
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что такое тепловой двигатель и как он работает

Экология СПРАВОЧНИК

Информация

Тепловой двигатель

Тепловые двигатели, устанавливаемые на современных автомашинах, являются двигателями внутреннего сгорания, т. е. такими, у которых топливо сгорает непосредственно в цилиндре.[ . ]

Иногда в качестве теплового резерва в насосных станциях устанавливают прямодействующие паровые насосы; однако ввиду малой производительности таких насосов, они могут применяться только при водоснабжении небольших заводов, с незначительным водопотреблением. Насосы с тепловыми двигателями должны устанавливаться при ненадежном источнике электроснабжения. Тепловой резерв, как правило, должен обеспечивать при выключении? электроэнергии не полное количество воды, необходимое для нормальной работы завода, а только то количество, которое необходимо для безаварийной установки огневых устаяовок.[ . ]

В камерах сгорания тепловых двигателей на механизм образования продуктов неполного сгорания и характер побочных реакций, протекающих при горении, влияет структура фронта пламени. На рис. 2.6, а приведена структура фронта диффузионного пламени (камера сгорания дизеля), а на рис. 2.6, б — структура фронта пламени, распространяющегося по гомогенной смеси (двигатели с внешним смесеобразованием) [11].[ . ]

Эффективность (к. п. д.) теплового двигателя определяется как отношение совершенной полезной работы к количеству энергии, полученной им от нагревателя, т. е.[ . ]

Принцип действия теплового двигателя.

Паровая машина или вообще тепловой двигатель — это устройство, преобразующее теплоту в работу. Работа — это процесс, подобный подъему груза.[ . ]

Построенный Бэнксом маломощпый тепловой двигатель на нитиноле непрерывно устойчиво работал, сделав более 1,7• 107 оборотов, и развивал мощность не менее 0,2 Вт, приводя во вращение генератор электрической энергии — от него горела электрическая лампочка.[ . ]

Оценку совершенства рабочего процесса тепловых двигателей можно вести относительно идеала — цикла Карно (рис. 2.2), в котором идеальный (без потерь) подвод теплоты от источника с неизменной температурой Тi к рабочему телу осуществляется по изотерме (Г]-const). Здесь и отвод теплоты от рабочего тела к источнику с неизменной температурой Ti также осуществляется изотермически (72-const). Поскольку другие источники теплоты отсутствуют, переходы с температурного уровня Т на уровень Тг и обратно возможны лишь по адиабатам, т. е. при ф-const и -const.[ . ]

Рассмотрим подробнее механизмы образования в тепловых двигателях основных загрязняющих веществ.[ . ]

В силу необратимости реальных процессов ни одна тепловая машина не работает по циклу Карно. Но теоретические циклы их по совершенству использования теплоты оцениваются степенью приближения термического КПД к значению КПД идеального цикла Карно. Большинство инженерных решений, используемых для усовершенствования тепловых двигателей, направлены на приближение их цикла к циклу Карно (регенерация, промежуточный подогрев рабочего тела при подводе теплоты, промежуточное его охлаждение при отводе теплоты и др.). Теоретическое количество теплоты, которое может быть выделено при сжигании топлива, никогда не используется по назначению полностью. Часть ее теряется. В тепловых двигателях — до 60—70%.[ . ]

Все известные ранее установки для преобразования тепловой энергии океана в механическую работу, а затем — в электрическую энергию основаны на применении турбин, приводимых в действие парами тех или иных жидкостей с низкой температурой кипения. Чтобы подобные системы были рентабельными, они должны иметь достаточно большую мощность. Капитальные затраты на их строительство весьма значительны, кроме того, они не свободны от недостатков, например — потери энергии в сетях распределения и обслуживания (до 10 %) и, как следствие, удорожание отпускной цены на электроэнергию (до 50 %). Такого рода соображения приводит изобретатель нитинолового теплового двигателя Р. Бэнкс в пользу маломощных преобразователей 5 (дело в том, что в свое время он не видел конкретных путей создания мощных мегаваттных преобразователей, основанных на ЭЗФ).[ . ]

Выхлопные газы легковых автомобилей и самосвалов. Идеальный тепловой двигатель — это такой двигатель, который все топливо преобразует только в СО2 и воду. К сожалению, тепловые двигатели, разработанные для транспорта, далеки от идеала, и их выхлопные газы — это серьезный источник всевозрастающего загрязнения среды.[ . ]

Первый опыт по превращению солнечной энергии в электрическую с помощью нитинолового двигателя Бэнкс произвел в ноябре 1973 г.: вода для горячей ванны подогревалась солнечными лучами. С тех пор работы по исследованию нитинола и его применению сильно расширились и ведутся в лабораториях Великобритании, Швейцарии, Бельгии, ФРГ, Японии. В США создан Нитиноловый технологический центр. Проведена Международная конференция но нитиноловым тепловым двигателям, к 1981 г. было опубликовано 400 научных сообщений на эту тему, выданы патенты на более чем 100 иитиноловых установок, в том числе на 12 тепловых двигателей.[ . ]

Тип термодинамического цикла и рабочего тела определяется областью рабочих температур теплового двигателя.[ . ]

Явление ЭЗФ в наше время находит различные применения, в том числе для создания нового типа тепловых двигателей, способных работать от тепловых источников низкопотенциального типа. Если диапазон температуры фазовых превращений будет находиться в пределах тем-пературного градиента, имеющегося в Мировом океане, то нитинол можно использовать в качестве твердого рабочего тела тепловой машины. Вместо аммиака или фреона — нитинол. Схема энергетической установки в этом случае полностью меняется. Применение нитинола открывает новый путь преобразования тепловой энергии океана.[ . ]

Фундаментальное значение изложенного результата состоит в том, что он устанавливает верхний предел КПД тепловых двигателей. Какие бы хитроумные механизмы ни изобретал инженер, пока он ’’связан” фиксированными значениями температур нагревателя и холодильника, КПД созданного им двигателя не может превысить значения, установленного в цикле Карно. Холодильник должен быть холодным, чтобы даже небольшое отданное ему количество энергии приводило к значительному приросту энтропии.[ . ]

В течение последних 30 лет и в перспективе до 2010 г., а может быть и далее, газовые турбины будут наиболее динамично развивающимся тепловым двигателем. Как видно из приведенных на рис. 6.2 графиков [6.8], максимальная единичная мощность ГТУ увеличилась за последнее время с 50 до 235 МВт, ее КПД при автономной работе с 27—28 % до 36,5 % (многовальные ГТУ, созданные на базе авиационных двигателей с высокими степенями повышения давления, работают с КПД 40 % и более), начальная температура газов, определяющая в основном совершенство газотурбинного цикла, увеличилась с 850 до 1400 °С, а степень сжатия — с 7 до 17. Проектируются еще более мощные и экономичные ГТУ.[ . ]

Обычно параллельно работающие противопожарные насосы не устанавливают, за исключением тех случаев, когда требуется установка теплового двигателя и когда для этого используются автомобильные или тракторные дви-татели, которые имеют недостаточную мощность, чтобы приводить в действие один насос, рассчитанный на подачу полного расхода воды для тушения пожара.[ . ]

С помощью транспортных средств осуществляется перемещение материальных объектов в пространстве, источником энергии которых являются тепловые двигатели, преобразующие химическую энергию топлива в механическую работу.[ . ]

Второй важнейший технологический тракт паротурбинной электростанции — её пароводяной тракт — включает пароводяную часть парогенератора тепловой двигатель — преимущественно паровую турбину; конденсационную установку, включая конденсатор и кон-денсатный насос; систему технического водоснабжения с насосами охлаждающей воды; водоподготовительную и питательную установку, включающую водоочистку, подогреватели высокого и низкого давления, питательные насосы, а также трубопроводы пара и воды.[ . ]

Читать еще:  Ауди а6с5 как проверить давление масла в двигателе

Постоянно действующие станции перекачки производственных сточных вод должны обеспечиваться двойным питанием электроэнергией или иметь резервные насосные агрегаты с тепловыми двигателями, если установка их допускается по условиям техники безопасности. Число напорных трубопроводов от насосных станций в этих случаях должно быть не менее двух; каждый из них рассчитан на пропуск всего количества сточных вод.[ . ]

Уровень врёдных веществ ф6 новый — природная концентрация вредных веществ в среде, определяемая также их местными и дальними переносами, неучитываемыми выбросами стационарных и нестационарных тепловых двигателей, энергетических и технологических агрегатов и машин.[ . ]

Дизельное топливо. Немецкий инженер Рудольф Дизель (1858— 1913) удостоился, пожалуй, самой высокой чести, о которой может мечтать изобретатель — его имя навсегда стало неотделимо от сконструированного им теплового двигателя. В бензиновом двигателе рабочая (топливно-воздушная) смесь воспламеняется от постороннего источника (электрической искры), в дизельном — под действием температуры, повышающейся при сжатии смеси. Потребление топлива дизелем на 20-30% меньше.[ . ]

Насосные станции первого подъема должны снабжаться электроэнергией по двум фидерам от двух независимых источников энергии. Если бесперебойность питания электроэнергией не может быть гарантирована и если нет напорных резервуаров с достаточным запасом воды, следует устанавливать насосы, приводимые в действие тепловыми двигателями. Так как насосные станции первого подъема обьКчно удалены от котельных и на них не могут быть установлены паровые турбины, то наиболее подходящими являются бензиновые двигатели.[ . ]

Насосные станции должны быть обеспечены бесперебойной подачей электроэнергии. Подвод ее к электродвигателям должен быть осуществлен по двум фидерам от двух независимых источников электроэнергии или от кольцевой энергосети. Если это сделать невозможно и затруднено устройство аварийного выпуска сточных вод, должен быть установлен резервный тепловой двигатель.[ . ]

В насосных станциях перекачки производственных сточных вод, содержащих легковоспламеняющиеся, взрывоопасные вещества, следует устанавливать взрывобезопасные электродвигатели, пусковые устройства и приборы электроосвещения в соответствии с правилами устройства электроустановок и классификацией помещений по отраслевым нормам. В таких станциях установка тепловых двигателей запрещается.[ . ]

В экологических системах роль входного потока может играть энергия пищи, а выходного — развиваемая организмами механическая мощность. Для процесса фотосинтеза входной энергией является энергия излучения Солнца, а выходной — свободная энергия химических связей глюкозы. В мышцах человека и животных на вход поступает энергия реакции гидролиза АТФ, выход обеспечивает механическую работу. Платой” за сопряжение в преобразователе потоков различных видов энергии (низкосортной и высокосортной) является диссипация, мерой которой является диссипированная мощность ц/.[ . ]

Хотя некоторые пелагические отложения, образующиеся на спрединговых и ¿сейсмичных хребтах, сходны между собой, характер их разрезов существенно различен. На спрединговых хребтах отсутствуют какие-либо признаки мелководной седиментации; пелагические осадки накапливались здесь (в случае крупных океанов) преимущественно на глубинах 2600—2700 м [2155]. Асейсмичные же хребты «вырастали» местами до таких малых глубин, что на их поверхности перед погружением в результате прекращения вулканической деятельности могли развиваться мелководные карбонатные фации. Вулканический «тепловой двигатель» таких хребтов, действуя относительно короткое время, не был способен вызывать продолжительную гидротермальную разгрузку, свойственную спрединговым хребтам.[ . ]

Наиболее распространенным источником ИК излучения техногенного происхождения является лампа накаливания. При температуре нити лампы накаливания 2300 — 2800 °К максимум излучения приходится на длину волны «1,2 мкм и около 95% энергии излучения приходится на ИК диапазон. Используемые для сушки и нагрева лампы накаливания с вольфрамовой нитью мощностью 1 кВт излучают в ИК диапазоне около 80% всей энергии. При понижении температуры общее содержание ИК излучения источника уменьшается. При температуре а.ч.т. 1550 К максимум излучения соответствует длине волны кт= ,7 мкм. При падении интенсивности в 70 раз максимум интенсивности соответствует Ли =10 мкм, а при Х„= 18 мкм интенсивность уменьшится в 700 раз. К числу спонтанных источников ИК излучения техногенного происхождения относятся также газоразрядные лампы, угольная электрическая дуга, электрические спирали из нихромовой проволоки, нагреваемые пропускаемым током, электронагревательные приборы, плазменные установки, печи самого различного назначения с использованием самого различного топлива (газа, угля, нефти, мазута, торфа и т. д.), электропечи, электротехнические устройства с неизбежным превращением доли электрической энергии в тепловую, двигатели внутреннего сгорания, электродвигатели, ракетные и авиационные двигатели, МГД-генераторы, реакторы атомных станций и т. д. Человеческая цивилизация, являясь сложной диссипативной структурой, неизбежно связана с тепловым излучением.[ . ]

Естествознание. 11 класс

Конспект урока

Естествознание, 11 класс

Урок 7. Принцип работы тепловых двигателей

Перечень вопросов, рассматриваемых в теме:

  • Что такое двигатель?
  • Почему невозможен вечный двигатель?
  • Что такое тепловой двигатель?
  • Каковы особенности тепловых двигателей, которые необходимо учитывать для эффективного применения?

Глоссарий по теме:

Двигателем можно назвать любое устройство, способное совершать механическую работу

Коэффициентом полезного действия теплового двигателя (КПД) называется отношение работы, совершаемой двигателем, к количеству теплоты, полученному от нагревателя:

Коэффициент полезного действия любого теплового двигателя меньше единицы и выражается в процентах. Невозможность превращения всего количества теплоты, полученного от нагревателя, в механическую работу является платой за необходимость организации циклического процесса и следует из второго закона термодинамики.

В реальных тепловых двигателях КПД определяют по экспериментальной механической мощности N двигателя и сжигаемому за единицу времени количеству топлива. Так, если за время t сожжено топливо массой m и удельной теплотой сгорания q, то:

Для транспортных средств справочной характеристикой часто является объем V сжигаемого топлива на пути s при механической мощности двигателя N и при скорости υ . В этом случае, учитывая плотность r топлива, можно записать формулу для расчета КПД:

Адиабати́ческий, или адиаба́тный процесс (от др.-греч. ἀδιάβατος «непроходимый») — термодинамический процесс в макроскопической системе, при котором система не обменивается теплотой с окружающим пространством.

Циклические тепловые двигатели – тепловые двигатели, работающие по циклу.

Процесс нагрева или охлаждения газа при постоянном объеме называется изохорным.

Процесс нагрева или охлаждения газа при постоянном давлении называется изобарным.

Основная и дополнительная литература по теме урока:

Обязательная литература:

  1. Громов С. В., Родина Н. А.. Физика – М. : Просвещение, 2001.
  2. Дерябин В. М. Законы сохранения в физике. – М.: Просвещение, 1982.
  3. Перельман Я.А. Занимательная физика. Книга 2. М.:Наука, 1982г.

Дополнительные источники:

Теоретический материал для самостоятельного изучения

Естественными двигателями являются любые живые организмы. Но работы мускул человеку всегда было мало, и со временем, еще задолго до появления науки, человек научился использовать средства, заменяющие свои физические усилия. С древних времен человек «приручил» силу ветра, воды, воздуха для передвижения и совершения механической работы. С тех времен до сегодняшних дней человек осуществляет попытки создания вечного двигателя. Возможно ли это?

Идея использования сил природы для совершения работы и увеличения силы человека привлекала с древних времен с создания простейших механизмов. Позже появились ветряные и водяные мельницы (упоминание о первых водяных мельницах относится к началу нашей эры).

Читать еще:  Гидроник может ли работать при включенном двигателе

В средневековье появляются уже достаточно совершенные водяные двигатели, использующиеся для различных нужд, например, как подъемные устройства (см. Рис. 2).

Рис.2. Подъемные устройства

Усложнение механизмов привело к идее построения вечного двигателя, по-латыни perpetuum mobile. Под таким двигателем понимали некоторое хитроумное устройство, которое без каких-либо внешних воздействий могло бы двигаться и совершать полезную механическую работу сколь угодно долго. Идея вечного двигателя была очень популярна в 17 – 18 веках.

Развитие науки термодинамики и строгие опыты Джоуля показали, что механическое движение никогда не исчезает бесследно. Энергия механического движения переходит в энергию хаотического движения частиц вещества. Закон сохранения энергии, основанный на опытных фактах, запрещает существование вечного двигателя. Любой двигатель является устройством способным совершать упорядоченную макроскопическую работу на основе преобразования энергии из одного вида в другой.

В самых первых двигателях механическая энергия ветра и воды преобразовывалась в механическую энергию вращающегося колеса. Позднее появились тепловые двигатели.

Развитие науки об электричестве привело к появлению электродвигателей, преобразующих энергию электрического поля в механическую энергию и наоборот.

Наконец в 20 веке человек научился преобразовывать в механическую энергию внутреннюю энергию атомных ядер.

Идея использования тепла для совершения механических действий также пришла из глубокой древности. Одно из первых дошедших до нас изобретений принадлежит Герону Александрийскому, жившему приблизительно за 120 лет до нашей эры. Соответствующее устройство, которое он назвал «эолипилом».

В шаре, из которого выходят две г-образные трубки находится вода. При нагревании вода закипает, и образующийся пар, выходя из трубок, вращает сосуд. Каждая трубка при этом работает как реактивный двигатель.

Эолипил Герона являлся игрушкой и не выполнял действительно полезной работы. Подобные игрушки, например, плавающий на реактивной паровой тяге кораблик, несложно сделать самому. Реальный двигатель, работающий на основе реактивной тяги, является неэффективным. В последующих устройствах, в которых тепловая энергия преобразовывалась в механическую, горячий водяной пар толкал поршень в цилиндре, что являлось более эффективным. Далее создаются паровые машины (первая — Ползуновым, дошедшая до наших дней — Уаттом) и циклические тепловые двигатели, работающие продолжительное время и возвращающиеся в исходное состояние (по циклу). Термодинамический цикл Папена сопровождается сменой изобарного и изохорного процессов, основанных на нагревании и охлаждении газа при постоянном объеме или давлении.

Устройство любого теплового двигателя достаточно сложна. Чтобы понять принцип работы тепловых машин, рассмотрим двигатель, состоящий из цилиндра с поршнем, который может перемещаться вдоль цилиндра в определенном диапазоне.

Рис.4 Тепловой двигатель

Данный двигатель состоит из цилиндра с поршнем, который может перемещаться вдоль цилиндра в определенном диапазоне. В объеме цилиндра ограниченного поршнем находится газ. Поднимаясь вверх, цилиндр может поднять некоторое тело, то есть совершить полезную механическую работу.

Пусть в начальном состоянии цилиндр в отсутствие груза находится в нижнем состоянии. Подвесим груз и начнем нагревать газ в цилиндре, для чего подсоединим к цилиндру нагреватель. Сначала газ расширяться не будет, поскольку давление снизу недостаточно для подъема поршня. Процесс нагрева или охлаждения газа при постоянном объеме называется изохорным. Все передаваемое газу тепло идет на нагрев газа, при этом его давление возрастает. Этот процесс и соответствующий ему график изображен на Рис. 5а.

Когда давление под поршнем возрастет достаточно для того, чтобы сила давления уравновесила вес поршня и груза, поршень начнет подниматься (Рис. 5б). Поскольку вес поршня и груза не изменяются, сила давления, а значит, и само давление остаются постоянными. При этом температура и объем газа увеличиваются. Процесс нагрева или охлаждения газа при постоянном давлении называется изобарным. Его график изображен на Рис. 5б. После достижения верхней точки наш двигатель совершит полезную работу. Поднятый груз можно отсоединить. Но, если мы хотим продолжить работу по циклу, необходимо вернуть поршень в нижнее положение.

Для этого газ необходимо охладить, следовательно, нужно убрать нагреватель и привести в тепловой контакт с цилиндром некоторое холодное тело. Тогда сила давления газа будет больше веса поршня. Поэтому первоначально процесс охлаждения газа пойдет без изменения объема (Рис. 5в). Это тоже изохорный процесс, но с уменьшением давления.

После того, как давление газа упадет настолько, что сила давления будет уравновешивать вес поршня, дальнейшее охлаждение газа будет сопровождаться уменьшением его объема. То есть поршень начнет двигаться вниз (Рис. 5г). Так же, как и процесс 2-3 процесс 4-1 будет происходить при постоянном давлении, то есть будет изобарным. Заметим, что соответствующий процесс на диаграмме p-V изобразился в виде замкнутой направленной линии (в данном случае – прямоугольника). Такой термодинамический процесс называется термодинамическим циклом.

Таким образом, для мысленного конструирования теплового двигателя нам потребовался сосуд с газом, (газ называется рабочим телом), нагреватель и холодное тело. Оказывается, что эти принципиальные элементы можно найти в любом тепловом двигателе.

Термодинамические циклы, соответствующие тепловым двигателям могут иметь вид разнообразных замкнутых кривых. В любой конструкции принцип работы двигателя остается неизменным.

  • Любой двигатель является устройством способным совершать упорядоченную макроскопическую работу на основе преобразования энергии из одного вида в другой.
  • Принцип работы любого циклического теплового двигателя заключается в том, что взятое от горячего тела тепло при выполнении циклического процесса рабочим телом идет на совершение механической работы. При этом часть этого тепла отдается некоторому холодному телу.
  • Тепловой двигатель (паровая машина) сыграл и продолжает играть чрезвычайно важную роль в развитии нашей цивилизации. И, несмотря на то, что с конца XIX столетия во многих случаях паровая машина была заменена электрическим двигателем, она сыграла особую роль в техническом прогрессе человечества, а сотни мастерских конструкций тепловых двигателей представляют собой образцы высокого взлета научно-технической, инженерной мысли и творчества человека во все времена.

Примеры и разбор решения заданий тренировочного модуля:

Задание 1. Вставьте пропущенные слова: «Под двигателем можно понимать ________ устройство, способное совершать ______ работу».

Варианты ответов: любое, реактивное; физическую; паровое; механическую

Правильный вариант: Под двигателем можно понимать любое устройство, способное совершать механическую работу.

Задание 2. Добавьте подпись названий для каждой модели реактивного двигателя.

Паровая машина Уатта

Правильный вариант:

Паровая машина Уатта

Водяная мельница

Эолипил Герона

КПД теплового двигателя

Средняя оценка: 4.2

Всего получено оценок: 217.

Средняя оценка: 4.2

Всего получено оценок: 217.

Тепловой двигатель (машина) — это устройство, преобразующее внутреннюю энергию топлива в механическую работу, обмениваясь теплотой с окружающими телами. Большинство современных автомобильных, самолетных, судовых и ракетных двигателей сконструированы на принципах работы теплового двигателя. Работа производится за счет изменения объема рабочего вещества, а для характеристики эффективности работы любого типа двигателя используется величина, которая называется коэффициентом полезного действия (КПД).

Как устроен тепловой двигатель

С точки зрения термодинамики (раздел физики, изучающий закономерности взаимных превращений внутренней и механической энергий и передачи энергии от одного тела другому) любой тепловой двигатель состоит из нагревателя, холодильника и рабочего тела.

Читать еще:  Что делать если заклинил двигатель на ваз 2114

Рис. 1. Структурная схема работы теплового двигателя:.

Первое упоминание о прототипе тепловой машине относится к паровой турбине, которая была изобретена еще в древнем Риме (II век до н.э.). Правда, изобретение не нашло тогда широкого применения из-за отсутствия в то время многих вспомогательных деталей. Например, тогда еще не был придуман такой ключевой элемент для работы любого механизма, как подшипник.

Общая схема работы любой тепловой машины выглядит так:

    Нагреватель имеет температуру T1 достаточно высокую, чтобы передать большое количество теплоты Q1.

  • Адиабатический процесс — это термодинамический процесс, происходящий без теплообмена с окружающей средой (Q=0);
  • Изотермический процесс — это термодинамический процесс, происходящий при постоянной температуре. Так как у идеального газа внутренняя энергия зависит только от температуры, то переданное газу количество тепла Q идет полностью на совершение работы A (Q = A).

Сади Карно доказал, что максимально возможный КПД, который может быть достигнут идеальным тепловым двигателем, определяется с помощью следующей формулы:

Формула Карно позволяет вычислить максимально возможный КПД теплового двигателя. Чем больше разница между температурами нагревателя и холодильника, тем больше КПД.

Какие реальные КПД у разных типов двигателей

Из приведенных примеров видно, что самые большие значения КПД (40-50%) имеют двигатели внутреннего сгорания (в дизельном варианте исполнения) и реактивные двигатели на жидком топливе.

Рис. 3. КПД реальных тепловых двигателей:.

Что мы узнали?

Итак, мы узнали что такое КПД двигателя. Величина КПД любого теплового двигателя всегда меньше 100 процентов. Чем больше разность температур нагревателя T1 и холодильника Т2, тем больше КПД.

Что такое тепловой двигатель и как он работает

CZ.1.07/1.1.10/03.0026

Конструктивные особенности двигателей и станков

Дви́гатель — устройство, преобразующее какой-либо вид энергии в механическую. Этот термин используется с конца XIX в. наряду со словом «мотор», которым с середины ХХ века чаще называют электродвигатели и двигатели внутреннего сгорания.

Двигатели подразделяют на первичные и вторичные.

К первичным относят непосредственно преобразующие природные энергетические ресурсы в механическую работу, например, ветрянное колесо, водяное колесо; тепловые двигатели — в них химическая энергия топлива или атомная энергия преобразуются в другие виды энергии ,а ко вторичным относятcя двигатели преобразующие энергию, выработанную или накопленную другими источниками (электридвигатель, пневмодвигатель,гидродвигатель).

В зависимости от используемого вида энергии двигатели делятся на:

  • тепловые
  • гидравлические
  • электрические.

Современная техника использует три типа тепловых машин:

  • поршневые
  • турбинные
  • и реактивные.

Виды тепловых двигателей:

  • паровая машина,
  • двигатель внутреннего сгорания,
  • паровая и газовая турбины,
  • реактивный двигатель.

По данным агенства экономических новостей, более перспективными разработками в настоящее время являются термомагнитный двигатель и тепловойдвигатель с внешним подводом теплоты.

По конструктивным особенностям двигатели подразделяются на:

  • поршневые двигатели (двигатели внутреннего сгорания, дизельныe,бензиновыe)
  • роторныe двигатели (паровые турбины, большинство электромоторов)
  • реактивныe двигатели (воздушно-реактивные, pакетные двигатели).

Поршневые двигатели также разделяются на три группы:

  • на двигатели, которые работают по циклу Отто (карбюраторные),
  • циклу Дизеля (дизельные)
  • и по циклу Тринклера с использованием форсунки.

Основными состабляющими двигателя внутреннего сгорания являются:

  • цилиндр
  • впускной клапан
  • выпускной клапан
  • впускной коллектор
  • свеча
  • камера сгорания
  • поршень
  • шатун
  • каленвал

Каждое движение поршня называется тактом. Цикл, создающий энергию для работы двигателя, состоит из четырех тактов: вниз, вверх, вниз, вверх. Соответственно этот процесс называется четырехтактным циклом.

Наиболее широко используются поршневые двигатели внутреннего сгорания. Двигатель внутреннего сгорания – это тепловая машина, в которой топливо сжигается в цилиндре под поршнем. Он используется для привода средств наземного, воздушного и водного транспорта, сельскохозяйственной и строительной техники, электрогенераторов, компрессоров и т.д.

Рассмотрим теперь конструктивные особенности станков.

Станок — машина, используемая (как правило, в промышленности) для обработки различных материалов, либо приспособление для выполнения чего-либо.
Большинство деталей машин обрабатываются на металлорежущих станках.
Металлорежущий станок — это технологическая машина, предназначенная для обработки материалов резанием с целью получения деталей заданной формы и размеров..

Основные составляющие станка:
Сyппорт, предназначенный для крепления и ручного либо автоматического перемещения инструмента.
Шпи́ндель — вращающийся вал металлорежущего станка с устройством для закрепления обрабатываемого изделия или режущего инструмента;
Привод — совокупность устройств, предназначенных для приведения в действие машин.
Ба́бка — предназначается для точного поддержания и перемещения обрабатываемой на станке детали относительно режущего инструмента или обрабатывающей поверхности. Располагается и крепится на станине.
Бабка передняя (бабка шпиндельная или бабка изделия) — узел связан с шпинделем, который сообщает вращательное движение обрабатываемой заготовке, детали или инструменту.
Бабка задняя (упорная) — используется для закрепления инструмента (например, сверл, зенкеров, разверток) для обработки детали по оси с внешней стороны.
Бабка шлифовальная представляет из себя узел шлифовальных станков.
Резец — режущий инструмент с одним прямым, изогнутым или фасонным главным режущим ребром.
Станки могут быть классифицированы по разным признакам.

По степени специализации они относятся к одной из следующих групп:

  • универсальные
  • специализированные
  • специальные.

По степени точности станки делят на пять классов:

  • нормальной точности
  • повышенной точности
  • высокой точности
  • особо высокой точности
  • особо точные станки, иначе мастер-станки.

По степени автоматизации различают механизированные и автоматизированные станки, в том числе автоматы и полуавтоматы:

По расположению шпинделя станки делятся на горизонтальные, вертикальные, наклонные и комбинированные.

В зависимости от массы различают станки легкие (до 1т), средние (до 10 т) и тяжелые (свыше 10 т), среди которых можно выделить особо тяжелые или уникальные (более 100 т).
Совокупность всех типов и размеров выпускаемых станков называется типажом.

По виду обработки металлорежущие станки делятся на:

  • Токарные
  • Сверлильные и расточные
  • Шлифовальные, полировальные, доводочные
  • Комбинированные, электро- и физико-химические
  • Зубо- и резьбо-обрабатывающие
  • Фрезерные
  • Строгальные, долбежные, протяжные
  • Разрезные

Металлорежущие станки почти всех типов выпускаются как с ручным управлением, так и с числовым программным управлением (ЧПУ).

  1. Что такое двигатель?
  2. Назовите основные составляющие двигателя внутреннего сгорания?
  3. Что такое металлорежущий станок?
  4. Какие металлорежущие станки по виду обработки Вы знаете?

Ответы.

  1. Дви́гатель — устройство, преобразующее какой-либо вид энергии в механическую. Этот термин используется с конца XIX в. наряду со словом «мотор», которым с середины ХХ века чаще называют электродвигатели и двигатели внутреннего сгорания.
  2. Основными состабляющими двигателя внутреннего сгорания являются: цилиндр, впускной клапан, выпускной клапан, впускной коллектор, свеча, камера сгорания, поршень, шатун, каленвал.
  3. Металлорежущий станок — это технологическая машина, предназначенная для обработки материалов резанием с целью получения деталей заданной формы и размеров. На станках обрабатывают заготовки не только из металла, но и из других материалов, поэтому термин «металлорежущий станок» является условным.
  4. По виду обработки металлорежущие станки делятся на токарные; cверлильные и расточные; шлифовальные, полировальные, доводочные; комбинированные, электро- и физико-химические; зубо- и резьбо-обрабатывающие; фрезерные; cтрогальные, долбежные, протяжные ; paзрезные.
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector