Autoservice-mekona.ru

Автомобильный журнал
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что такое такт рабочего цикла двигателя внутреннего сгорания

Что такое такт рабочего цикла двигателя внутреннего сгорания

Рабочим циклом двигателя внутреннего сгорания называют совокупность процессов, повторяющихся в цилиндре в такой последовательности: впуск свежего заряда, сжатие, расширение или рабочий ход, выпуск.

Цикл может быть осуществлен либо за четыре, либо за два такта. В первом случае цикл называется четырехтактным, во втором – двухтактным.

Рабочий цикл поршневого двигателя проходит по одной из двух схем, представленных на рис.1. На схеме, изображенной на рис.1,а, представлен рабочий цикл с внешним смесеобразованием (бензиновые и газовые двигатели), а на рис.1,б – рабочий цикл с внутренним смесеобразованием (дизели и бензиновые с непосредственным впрыском).

Рисунок 1 – Схемы рабочего цикла двигателей

а) с внешним смесеобразованием; б) с внутренним смесеобразованием

Рабочий цикл четырехтактного бензинового двигателя

При рассмотрении цикла условно принять, что начало рабочего цикла совпадает с ВМТ, а каждый такт начинается и заканчивается в одной из мертвых точек.

Первый такт – впуск

При вращении коленчатого вала (по направлению стрелки) поршень перемещается из ВМТ в НМТ, впускной клапан открывается, выпускной клапан закрыт. Через открытый клапан цилиндр соединяется с системой впуска. Вследствие гидравлического сопротивления впускного трубопровода, впускного клапана и увеличения объема при перемещении поршня давление в цилиндре становится меньше атмосферного и воздух поступает в цилиндр. Горючая смесь, состоящая из паров мелкораспыленного топлива и воздуха, поступает под действием разряжения из впускного трубопровода в цилиндр, где смешивается с небольшим количеством остаточных газов, оставшихся от предыдущего цикла, и образует рабочую смесь.

При подходе поршня к НМТ давление в цилиндре на 0,01…0,02 МПа меньше атмосферного, а температура смеси вследствие подогрева от контакта с нагретыми деталями двигателя и перемешивания с отработавшими газами повышается до 350…390 К.

Второй такт – сжатие

Такт впуска заканчивается, когда поршень приходит в НМТ. При дальнейшем повороте коленчатого вала поршень перемещается из НМТ в ВМТ и сжимает рабочую смесь. В течение такта сжатия оба клапана остаются закрытыми.

Объем смеси при сжатии уменьшается, а давление внутри цилиндра увеличивается и достигает (в зависимости от степени сжатия) 1,0…1,5 МПа, а температура 600…650 К.

Для наилучшего использования теплоты, выделяющейся при сгорании, необходимо, чтобы сгорание топлива заканчивалось при положении поршня, возможно близком к ВМТ. Поэтому воспламенение топлива в бензиновых двигателях, осуществляемое электрической искрой, обычно производится до прихода поршня к ВМТ.

Третий такт – расширение или рабочий ход

Оба клапана закрыты. Сжатая рабочая смесь воспламеняется и быстро сгорает, образуя большое количество горячих газов, вследствие чего в цилиндре резко увеличиваются температура и давление. Под действием давления газов поршень перемещается к НМТ, газы расширяются и совершают полезную работу.

В начале расширения давление составляет 3…4 МПа, температура 2300…2500 К, а при подходе поршня к НМТ, вследствие увеличения объема, давление снижается до 0,3…0,5 МПа, а температура составляет 1200…1500 К.

Четвертый такт – выпуск

Поршень перемещается от НМТ к ВМТ. Через открытый выпускной клапан отработавшие газы выталкиваются из цилиндра в выпускной трубопровод и в атмосферу.

При такте выпуска не достигается полная очистка цилиндра от отработавших газов, поэтому в конце выпуска давление в цилиндре составляет 0,105…0,120 МПа, а температура 700…900 К.

После окончания такта выпуска рабочий цикл повторяется в рассмотренной выше последовательности.

Только при такте расширения совершается полезная работа, а остальные такты являются вспомогательными и поршень при этих тактах перемещается за счет энергии вращающегося коленчатого вала с маховиком и работы других цилиндров (в многоцилиндровых двигателя).

Рабочий цикл четырехтактного дизеля

Рабочий цикл четырехтактного дизеля, как и рабочий цикл четырехтактного бензинового двигателя, состоит из четырех повторяющихся тактов: впуска, сжатия, расширения газов или рабочего хода и выпуска. Однако рабочий цикл дизеля существенно отличается от рабочего цикла бензинового двигателя. В цилиндр дизеля поступает чистый воздух, а не горючая смесь. Воздух сжимается с высокой степенью сжатия, вследствие чего значительно повышается его давление и температура. В конце сжатия в нагретый воздух из форсунки впрыскивается мелкораспыленное топливо, воспламеняющееся не от электрической искры, а от соприкосновения с горячим воздухом.

Первый такт – впуск

При движении поршня от ВМТ к НМТ давление в цилиндре снижается вследствие гидравлического сопротивления воздухоочистителя, впускного трубопровода и через открытый впускной клапан в цилиндр поступает очищенный воздух. Воздух перемешивается с небольшим количеством оставшихся от предыдущего цикла отработавших газов, температура его повышается, но меньше, чем в бензиновом двигателе, так как количество остаточных газов в цилиндре дизеля меньше, чем в бензиновом двигателе. Кроме того, подогрев воздуха происходит и от контакта с нагретыми деталями двигателя, и в конце такта впуска температура воздуха достигает 320…350 К, а давление 0,08…0,09 МПа.

Второй такт – сжатие

Поршень движется от НМТ к ВМТ, впускной и выпускной клапаны закрыты. Давление и температура воздуха увеличиваются и при подходе поршня к ВМТ составляют: давление 4,0…5,5 МПа, а температура 850…1000 К. В конце такта сжатия с помощью насоса через форсунку в цилиндр под высоким давлением впрыскивается мелкораспыленное топливо. Давление впрыскивания составляет 13,0…18,5 МПа. Топливо от соприкосновения с нагретым воздухом испаряется, его пары перемешиваются с воздухом и воспламеняются.

Третий такт – расширение или рабочий ход

При сгорании топлива, вследствие подвода большого количества теплоты, резко увеличивается давление и температура образовавшихся газов.

В начале такта расширения давление газов составляет 6,0…8,0 МПа, а температура 2100…2300 К.

Под действием давления поршень из ВМТ перемещается в НМТ, совершая полезную работу. Объем цилиндра увеличивается, давление и температура газов снижаются и при подходе поршня к НМТ составляют: давление 0,2…0,4 МПа, температура 800…1200 К.

Четвертый такт – выпуск

Поршень перемещается от НМТ к ВМТ. Через открытый выпускной клапан отработавшие газы выталкиваются через выпускной трубопровод в атмосферу.

В конце такта выпуска давление газов 0,11…0,12 МПа, температура 800…900 К.

После такта выпуска рабочий цикл дизеля повторяется.

Рабочий цикл двухтактного карбюраторного двигателя

В двухтактных двигателях время, отводимое на рабочий цикл, используется более полно, так как процессы впуска и выпуска совмещены по времени с процессами сжатия и расширения. В отличие от четырехтактного двигателя очистка цилиндра от отработавших газов и наполнение его свежим зарядом происходит при положении поршня вблизи НМТ. При этом очистка цилиндра от отработавших газов осуществляется не выталкиванием их поршнем, а предварительно сжатым до определенного давления воздухом или горючей смесью.

На рис.2 представлена схема двухтактного карбюраторного двигателя с кривошипно-камерной продувкой.

Рисунок 2 – Схема двухтактного карбюраторного двигателя

1 – впускное окно; 2 – выпускное окно; 3 – свеча зажигания; 4 – цилиндр; 5 — поршень; 6 – перепускное окно; 7 – канал; 8 – герметичный картер

В этом двигателе нет специального механизма газораспределения. Вместо него цилиндр имеет окна: впускное окно 1, соединяющее цилиндр с карбюратором; выпускное окно 2 и перепускное окно 6, соединяющее цилиндр с герметичным картером при помощи канала 7. Перемещающийся внутри цилиндра поршень в определенной последовательности открывает и закрывает окна, выполняя функции механизма газораспределения. В цилиндр двухтактного двигателя с кривошипно-камерной продувкой горючая смесь поступает через картер. Для подготовки двигателя к работе необходимо сделать два подготовительных хода: первый – впуск горючей смеси в картер; второй – перепуск горючей смеси из картера в цилиндр.

Читать еще:  Чем отличаются двигатели ваз 2110 и ваз 2114

Первый такт

Поршень 5 перемещается снизу вверх и боковой поверхностью сначала закрывает перепускное окно 6, а затем и выпускное 2. В цилиндре происходит сжатие рабочей смеси, а в картер вследствие разряжения из карбюратора поступает горючая смесь. При подходе поршня к ВМТ между электродами свечи зажигания появляется электрическая искра, в результате чего рабочая смесь в цилиндре воспламеняется и сгорает.

Второй такт

Образовавшиеся горячие газы расширяются и давят на поршень, вследствие чего он опускается вниз, совершая рабочий ход. В конце рабочего хода поршень сначала открывает выпускное окно 2, и отработавшие газы из цилиндра через глушитель выходят в атмосферу. Опускаясь ниже, поршень открывает перепускное окно 6, и горючая смесь по каналу 7 поступает в цилиндр, заполняет его и вытесняет отработавшие газы. Незначительная часть горючей смеси вместе с отработавшими газами выходит в атмосферу и не принимает участия в рабочем цикле.

Примечание: Параметры цикла (давление и температура) соответствуют параметрам четырехтактного бензинового двигателя.

Двухтактные двигатели, работающие по данной схеме газообмена, имеют сухой картер, т.е. в картере отсутствует смазочный материал. Для смазывания трущихся деталей двигателя смазочный материал добавляют к топливу в пропорции 1:20 по объему. Следовательно, горючая смесь в виде воздуха, топлива и масла обеспечивает при своем движении одновременно и смазку двигателя.

На рис.3 показан принцип действия четырех- и двухтактного двигателя внутреннего сгорания.

Рисунок 3 – Принцип действия двигателя внутреннего сгорания

Что такое такт рабочего цикла двигателя внутреннего сгорания

Двигатель внутреннего сгорания (ДВС) – это тепловая машина, преобразующая теплоту, выделенную при сгорании топлива, в механическую работу. Термодинамический цикл поршневого ДВС представляет собой последовательно повторяющиеся процессы. Основными циклами ДВС являются: цикл Отто, цикл Дизеля и цикл Сабатэ – Тринклера [3]. Такие циклы на сегодняшний день называют традиционными, они включают процессы: впуск свежего заряда; сжатие; сгорание и расширение; выпуск. В четырехтактном ДВС все эти процессы разделены по тактам: первый – впуск, второй – сжатие, третий – рабочий ход, четвертый – выпуск. В двухтактном ДВС процессы объединены в одном такте: первый – впуск и сжатие, второй – рабочий ход и выпуск.

Как известно, традиционные циклы имеют невысокий коэффициент полезного действия (КПД), так как введенная с топливом в двигатель теплота теряется на нагрев деталей и отвод охлаждающей жидкостью системы охлаждения, выпускными газами, маслом смазочной системы, теряется из-за неполноты сгорания топлива. Эти потери могут составлять от 52 до 78 % [1]. Поэтому для повышения топливной экономичности и КПД ДВС необходимо рассматривать нетрадиционные циклы, позволяющие дополнительно использовать теплоту, отданную в систему охлаждения и с отработавшими газами, обеспечивающие полное и качественное сгорание топлива.

Двигатели с нетрадиционными рабочими циклами подробно рассмотрены в работе [4], где рассмотрены основные направления и методы модифицирования рабочего процесса ДВС. Оценка эффективности протекания рабочего процесса в ДВС предложена в работе [5] и предусматривает отношение длительности одного рабочего цикла, выраженного в углах поворота коленчатого вала (ПКВ), к длительности всех рабочих ходов в одном рабочем цикле, выраженных в углах ПКВ:

, (*)

где Т – длительность одного рабочего цикла, выраженного в углах поворота коленчатого вала;

Тр – длительность всех рабочих ходов в одном рабочем цикле, выраженных в углах поворота коленчатого вала.

Формула (*) показывает, что чем ниже критерий k, тем выше эффективность протекания рабочего процесса в ДВС.

Анализ нетрадиционных циклов с точки зрения повышения КПД ДВС показывает, что наиболее перспективным будет цикл с добавленными тактами. Например, двигатель Крауэра [2]. Первые три такта: впуск, сжатие, расширение (рабочий ход) в этом двигателе протекают как в традиционном цикле, но на четвертом такте газы не выводятся из цилиндра, а вновь сжимаются и в конце сжатия в цилиндр подводится водяной пар, который, расширяясь на пятом такте, совершает полезную работу. Отработавшие газы и пар выводятся из цилиндра на шестом такте. Таким образом, в соответствии с формулой (*) критерий эффективности данного двигателя составит 3, тогда как для традиционного четырехтактного ДВС он равен 4.

Двигатели с добавленными тактами имеют перспективу лучшей экономичности за счет утилизации теплоты отведенной от нагретых деталей цилиндропоршневой группы, а также за счет продолженного расширения рабочего тела.

В качестве примера ДВС с продолженным расширением рабочего тела можно привести пятитактный двигатель [4, 5], имеющий три цилиндра: два крайних цилиндра работают по классической четырехтактной схеме, а третий – средний – используется для продолженного расширения газов, поочередно поступающих из двух крайних цилиндров. Как только поршень в одном из крайних цилиндров достигает нижней мертвой точки в конце такта рабочего хода, выпускной клапан открывается, и отработавшие газы вытесняются поршнем в средний цилиндр, толкая его вниз и создавая дополнительный пятый такт. Таким образом, за 720 ° ПКВ в трех цилиндрах реализуется два рабочих цикла и в каждом из них совершается два рабочих хода (табл. 1). Критерий эффективности данного двигателя выше традиционного четырехтактного ДВС и составляет 2.

С точки зрения утилизации энергии выхлопных газов и теплоты, отводимой стенками цилиндропоршневой группы, предлагается конструкция ДВС с реализацией рабочего цикла по семитактной схеме.

Конструкция включает основной цилиндр 3 (рис. 1), в котором реализуется традиционный четырехтактный цикл и дополнительный цилиндр 12, в котором реализуются два рабочих хода: один за счет вытеснения газов из основного цилиндра, второй за счет пара впрыснутой воды. Весь рабочий цикл такого двигателя протекает за семь тактов (табл. 2).

Процессы, протекающие в цилиндрах пятитактного ДВС

Устройство современного двигателя

Рабочий цикл четырехтактного дизельного двигателя

Рабочий цикл авто с дизельным двигателем отличается тем, что при такте впуска в цилиндр двигателя поступает очищенный воздух, а не горючая смесь, как в карбюраторном двигателе.

Первый такт — впуск.

Устройство двигателя современного

автомобиля, устройство систем и механизмов

Поршень перемещается от ВМТ к НМТ, через открытый впускной клапан в цилиндр поступает очищенный воздух (из-за разрежения, создаваемого поршнем). Воздух перемешивается с небольшим количеством оставшихся от предыдущего цикла отработавших газов, температура повышается и в конце такта впуска достигает 300—320 К, а давление 0.08—0.09 МПа. Коэффициент наполнения цилиндра 0,9 и выше, т. е. больше, чем у карбюраторного двигателя.

Работа четырехтактного одноцилиндрового дизельного двигателя:

а — впуск воздуха; б — сжатие; в — рабочий ход; г — выпуск отработавших газов; 1— цилиндр; 2 — топливный насос, 3 — поршень: 4 — форсунка, 5 — впускной клапан, 6 — выпускной клапан

Второй такт — сжатие.

Как устроен простейший двигатель?

Устройство двигателя для детей

Поршень движется от НМТ к ВМТ, впускной и выпускной клапаны закрыты. Давление и температура воздуха увеличиваются и в конце такта составляют соответственно 3—5 МПа и 800—900 К. Степень сжатия регламентируется исправностью деталей КШМ и равна 17—21.

Третий такт — рабочий ход.

В конце такта сжатия (20—30 градусов угла поворота коленчатого вала ло прихода поршня в ВМТ) с помощью насоса через форсунку в цилиндр под высоким давлением (15—20 МПа) в мелкораспыленном виде впрыскивается порция топлива. Топливо от соприкосновения с нагретым воздухом испаряется, его пары перемешиваются с нагретым воздухом и воспламеняются. При сгорании топлива, вследствие подвода большого количества теплоты, резко увеличиваются лишение и температура образовавшихся газов. В начале такта расширения давление газов составляет 7—8 МПа. а температура 2100—2300 К. Под действием давления поршень перемешается от ВМТ к НМТ, совершая полезную работу. Объем цилиндра увеличивается, давление и температура газов снижаются и при подходе поршня к НМТ составляют 0,2-0,4 МПа .

Читать еще:  Что нужно для замены карбюраторного двигателя на инжекторный

Четвертый такт — выпуск.

Поршень перемещается от НМТ к ВМТ. Через открытый выпускной клапан отработавшие газы выталкиваются через выпускной трубопровод в окружающую среду. В конце такта выпуска давление газов равно 0,11 -0,12 МПа, температура 850—1200. После этого рабочий цикл дизеля повторяется.
В двухтактных двигателях время, отводимое на рабочий цикл, используется более полно, так как процессы выпуска и впуска совмещены по времени с процессами сжатия и рабочего хода. Рабочий цикл происходит за 360 градусов (один оборот коленчатого вала).

При движении поршня от ВМТ к НМТ одновременно происходят процессы расширения и выпуска с продувкой цилиндра, а при обратном движении от НМТ к ВМ1 впуск и сжатие. Изменения параметров цикла (давление и температура) соответствуют изменениям параметров четырехтактного двигателя.
Сравнение рабочих циклов четырех- , двухтактных двигателей показывает, что при одинаковых размерах цилиндра и частоте вращения коленчатого вала мощность двухтактных двигателей выше в 1.5—1,7 раза. Он проще по конструкции и компактнее.
К недостаткам двухтактного двигателя следует отнести ограниченное время газообмена, что ухудшает очистку цилиндра от отработавших газов, увеличивает потери части свежею заряда, снижает экономичность.

СПОСОБ УПРАВЛЕНИЯ РАБОТОЙ ДВС

Изобретение относится к двигателестроению, в частности к способам, используемым для управления работой двигателя внутреннего сгорания (ДВС) с распределенным впрыском топлива. Способ позволяет повысить точность управления работой ДВС в отсутствие датчика фаз за счет отнесения начала фазированного впрыска на режим пуска двигателя. Способ управления работой двигателя внутреннего сгорания (ДВС) включает режим пуска ДВС, послепусковой режим работы ДВС и определение фазы рабочего цикла ДВС, снабженного электронной системой управления, включающей в себя датчик положения коленчатого вала, контроллер, выполненный на базе микроЭВМ, топливные форсунки и катушки зажигания, при котором выбирают цилиндр ДВС, выполняют тестовый впрыск топлива в выбранный цилиндр, воспламеняют топливно-воздушную смесь в выбранном цилиндре и определяют по реакции двигателя такт рабочего хода выбранного цилиндра и фазу рабочего цикла ДВС. Фазу рабочего цикла определяют на режиме пуска ДВС, для чего раскручивают пусковым устройством коленчатый вал ДВС. Затем выполняют тестовый впрыск топлива в выбранный цилиндр ДВС и впрыск топлива в цилиндр, следующий по порядку работы ДВС. Последовательно воспламеняют топливно-воздушную смесь в названных цилиндрах. Подачу топлива в остальные цилиндры выполняют после определения фазы рабочего цикла ДВС, переводя ДВС в послепусковой режим работы. 1 з.п. ф-лы, 9 ил.

1. Способ управления работой двигателя внутреннего сгорания (ДВС), включающий режим пуска ДВС, послепусковой режим работы ДВС и определение фазы рабочего цикла ДВС, снабженного электронной системой управления, включающей в себя датчик положения коленчатого вала, контроллер, выполненный на базе микроЭВМ, топливные форсунки и катушки зажигания, при котором выбирают цилиндр ДВС, выполняют тестовый впрыск топлива в выбранный цилиндр, воспламеняют топливно-воздушную смесь в выбранном цилиндре и определяют по реакции двигателя такт рабочего хода выбранного цилиндра и фазу рабочего цикла ДВС, отличающийся тем, что фазу рабочего цикла определяют на режиме пуска ДВС, для чего раскручивают пусковым устройством коленчатый вал ДВС, затем выполняют тестовый впрыск топлива в выбранный цилиндр ДВС и впрыск топлива в цилиндр, следующий по порядку работы ДВС, последовательно воспламеняют топливно-воздушную смесь в названных цилиндрах, а подачу топлива в остальные цилиндры выполняют после определения фазы рабочего цикла ДВС, переводя ДВС в послепусковой режим работы. 2. Способ управления работой ДВС по п.1, отличающийся тем, что впрыск топлива в цилиндр, следующий по порядку работы ДВС после выбранного цилиндра, выполняют на такте, следующем за тактом, при котором выполняют тестовый впрыск.

Изобретение относится к области двигателестроения и может быть использовано для управления работой двигателя внутреннего сгорания (далее ДВС) с распределенным впрыском топлива.

Из уровня техники известны электронные системы управления ДВС с распределенным последовательным впрыском топлива (см., например: Твег Росс. Системы впрыска бензина. Устройство, обслуживание, ремонт. М.: Изд. «За рулем», 1999 г., стр.104), включающие в себя датчик углового положения коленчатого вала ДВС (далее датчик положения коленвала), контроллер на базе микроЭВМ, датчик углового положения распределительного вала ДВС (далее датчик фаз), индивидуальные для каждого цилиндра катушки зажигания, и топливные форсунки.

Полный рабочий цикл ДВС осуществляется за два оборота коленчатого вала, поэтому угловое положение коленчатого вала не дает точной информации о фазе рабочего процесса. Для однозначного определения фазы рабочего процесса контроллером используют совокупность сигналов датчика положения коленвала и датчика фаз. Электронная система управления ДВС усложнена наличием датчика фаз и дополнительной проводкой, связывающей этот датчик с контроллером системы управления ДВС.

Из патентов RU 242732, RU 2242733, RU 2242734, МПК7 G01M 15/00, F02M 65/00, публ. 20.12.2004 г., известны способы управления работой ДВС, включающие определение фазы рабочего цикла ДВС с распределенным впрыском топлива в системе, снабженной датчиком положения коленвала, датчиком фаз, контроллером, выполненным на базе микроЭВМ, и топливными форсунками.

Упомянутые выше способы реализуются после пуска в процессе работы ДВС и предусматривают — при отсутствии (пропадании) сигнала датчика фаз -впрыск тестового пониженного/повышенного количества топлива в один из цилиндров и определение по реакции двигателя такта рабочего хода выбранного цилиндра и фазы рабочего цикла ДВС. Реакцию ДВС определяют по изменению времени поворота коленчатого вала на заданный угол (патент RU 2242732) или по изменению угловой скорости коленчатого вала (патенты RU 2242733, RU 2242734).

За прототип заявляемого технического решения взят способ управления работой ДВС, включающий определение фазы рабочего цикла, известный из патента RU 2170915 С1, МПК7 G01M 15/00, F02M 65/00, публ. 20.07.2001 г. Способ предусматривает на режиме группового впрыска топлива выполнение тестового впрыска пониженного/повышенного количества топлива в один из цилиндров ДВС, воспламенение топливно-воздушной смеси в цилиндрах и определение по реакции двигателя такта рабочего хода выбранного цилиндра и фазы рабочего цикла ДВС.

Способ-прототип применяется только на послепусковых режимах, поэтому возможность точного управления работой ДВС, а именно управление количеством топлива, впрыскиваемого в цилиндры, возникает не с момента старта ДВС.

Задачей заявляемого технического решения является повышение точности управления работой ДВС в отсутствие датчика фаз.

Указанная задача решается способом управления работой ДВС, включающим режим пуска ДВС, послепусковой режим работы ДВС и определение фазы рабочего цикла ДВС, снабженного электронной системой управления, включающей в себя датчик положения коленчатого вала, контроллер, выполненный на базе микроЭВМ, топливные форсунки и катушки зажигания, при котором выбирают цилиндр ДВС, выполняют тестовый впрыск топлива в выбранный цилиндр, воспламеняют топливно-воздушную смесь в выбранном цилиндре и определяют по реакции двигателя такт рабочего хода выбранного цилиндра и фазу рабочего цикла ДВС.

Читать еще:  Что нужно для замены масла в двигателе авто

Задача решается тем, что фазу рабочего цикла определяют на режиме пуска ДВС, для чего раскручивают пусковым устройством (в качестве пускового устройства может быть использован, например, стартер или стартер-генератор) коленчатый вал ДВС, после чего выполняют тестовый впрыск топлива в один из цилиндров ДВС и впрыск топлива в цилиндр, следующий по порядку работы ДВС, последовательно воспламеняют топливно-воздушную смесь в названных цилиндрах, а подачу топлива в остальные цилиндры выполняют после определения фазы рабочего цикла ДВС, переводя ДВС в послепусковой режим работы.

Впрыск топлива в цилиндр, следующий по порядку работы ДВС после выбранного цилиндра, выполняют, как правило, на такте, следующем за тактом, при котором выполняют тестовый впрыск.

Приведенная совокупность признаков в сравнении с известным уровнем техники позволяет сделать вывод о соответствии заявляемого технического решения условию «новизна». В то же время, совокупность отличительных признаков, приводящая к решению поставленной задачи, явным образом не следует из уровня техники, поэтому заявляемое техническое решение соответствует условию «изобретательский уровень».

Сущность изобретения поясняется следующими чертежами.

На фиг.1 показана схема системы управления ДВС для реализации заявленного способа; на фиг.2.1-2.4 приведена графическая развертка работы двигателя в зависимости от угла положения коленчатого вала (ПКВ) на режиме пуска и послепусковом режиме при наиболее предпочтительном моменте тестового впрыска топлива; на фиг.3.1-3.4 приведена графическая развертка работы двигателя в зависимости от угла положения коленчатого вала на режиме пуска и послепусковом режиме при наименее предпочтительном моменте тестового впрыска топлива.

Заявляемое техническое решение может быть реализовано в системе управления четырехтактного четырехцилиндрового ДВС, включающей в себя (см. фиг.1) датчик 1 углового положения коленчатого вала ДВС, контроллер 2, выполненный на базе микроЭВМ, топливные форсунки 3 и катушки 4 зажигания.

Датчик 1 углового положения подключен ко входу контроллера 2, топливные форсунки 3 и катушки 4 зажигания подключены к выходам контроллера 2. В качестве датчика 1 положения коленвала может быть использован индукционный (электромагнитный) датчик. Датчик размещают над зубчатым диском, закрепленным на коленвале двигателя и имеющем 58 зубьев (60 минус 2 пропущенных зуба).

В примере показана система управления четырехцилиндровым ДВС, однако способ осуществим для двигателя с любым числом цилиндров.

Система также может содержать другие датчики режима работы ДВС, такие как датчик расхода воздуха, датчик положения дроссельной заслонки, датчик температуры охлаждающей жидкости и т.п., подключенные к соответствующим входам контроллера 2.

Система работает следующим образом.

В исходном состоянии двигатель не работает, сигналы датчика 1 углового положения коленвала двигателя не формируются. Форсунки 3 и катушки 4 зажигания находятся в выключенном состоянии, т.е. топливоподача в ДВС отсутствует, напряжение на электроды свечей зажигания не подается.

Для реализации заявляемого технического решения выполняют следующую последовательность действий.

Стартером или другим пусковым устройством раскручивают коленчатый вал ДВС. Этот режим работы ДВС называется пусковым или режимом пуска двигателя.

Выбирают цилиндр для осуществления тестового впрыска топлива. В данном примере выбран первый цилиндр.

По прохождению мимо чувствительного элемента датчика 1 положения коленвала опорной метки на зубчатом диске-задатчике (пропущенные зубья) определяют контроллером 2 прохождение поршнем в выбранном цилиндре верхней мертвой точки (далее — в.м.т.).

Контроллером 2 подают — в привязке к в.м.т.- импульс питающего напряжения на топливную форсунку 3 выбранного цилиндра ДВС, благодаря чему осуществляют тестовый впрыск топлива в выбранный цилиндр. Кроме того, впрыск топлива осуществляют в цилиндр, следующий по порядку работы ДВС, как правило, на такте, следующем за тактом, при котором выполняют тестовый впрыск. В данном примере это третий цилиндр.

Следует отметить, что термин «впрыск топлива в цилиндр» является условным, поскольку фактически впрыск осуществляется в предцилиндровое пространство впускной трубы перед впускным клапаном, где и происходит смешивание топлива с воздухом (см., например, Руководство по эксплуатации, техническому обслуживанию и ремонту автомобилей ВА3-2110, ВА3-2111, ВА3-2112. М.: Ливр, 1998, с.163, рис.9-22). Непосредственный забор топливно-воздушной смеси в цилиндр ДВС осуществляется на такте впуска при открытом впускном клапане.

Воспламеняют топливно-воздушную смесь в выбранном цилиндре посредством подачи управляющего напряжения одновременно на катушки зажигания первого и четвертого или второго и третьего цилиндров в зависимости от выбранной для тестового впрыска форсунки. Затем воспламеняют топливно-воздушную смесь в цилиндре, следующем по порядку работы ДВС.

Определяют реакцию ДВС на тестовый впрыск топлива (как изменение скорости коленвала или изменение времени прохождения валом заданного угла).

Если реакция обнаружена, то контроллером 2 определяют, что такт, в котором была обнаружена реакция, является тактом рабочего хода выбранного цилиндра и устанавливают фазу рабочего цикла ДВС.

Работа двигателя в зависимости от угла положения коленчатого вала на режиме пуска и послепусковом режиме при наиболее предпочтительном моменте тестового впрыска топлива показана на фиг.2.1-2.4. Тестовый впрыск осуществляют на такте работы первого цилиндра, который оказывается тактом впуска (фиг.2.1). За этим следуют такты сжатия с последующей подачей импульса зажигания на свечу первого цилиндра (фиг.2.3), воспламенение топливно-воздушной смеси и такт рабочего хода, при котором возрастает угловая скорость коленвала (фиг.2.4). Возрастание угловой скорости коленвала регистрируют контроллером как такт рабочего хода первого цилиндра и в соответствии с этой установкой определяют фазу рабочего цикла ДВС. Учитывая тот факт, что поршни ДВС вполне однозначно связаны между собой коленвалом, а порядок работы одного из цилиндров (в данном случае — первого) также определен однозначно, синхронизация работы остальных трех цилиндров может быть осуществлена известными методами по заранее заданному алгоритму. В последующем после определения фазы рабочего цикла ДВС такте впрыск осуществляют по заданному для данного ДВС алгоритму, в данном случае во второй цилиндр (фиг.2.2). Следуют последовательные впрыски в первый, третий, четвертый и второй цилиндры. Цилиндры последовательно проходят такты рабочего процесса, двигатель запускается и выходит на послепусковой режим работы (фиг.2.4).

Однако изначально момент тестового впрыска топлива может оказаться не столь удачным и, в наиболее худшем варианте, совпасть с тактом рабочего хода первого цилиндра (фиг.3.1). Соответственно, далее следуют такты выпуска, впуска и сжатия с последующей подачей импульса зажигания на свечу первого цилиндра (фиг.3.3), воспламенение топливно-воздушной смеси и такт рабочего хода, при котором возрастает угловая скорость коленвала (фиг.3.4). Далее процедура повторяет описанное выше: возрастание угловой скорости коленвала регистрируют контроллером как такт рабочего хода первого цилиндра и в соответствии с этой установкой определяют фазу рабочего цикла ДВС. В конечном итоге двигатель запускается и выходит на послепусковой режим работы (фиг.3.4).

Во всех случаях реализации способа управления работой ДВС от наиболее предпочтительного до наименее предпочтительного момента тестового впрыска топлива на режиме пуска двигателя после возрастания угловой скорости коленвала в результате тестового впрыска происходит ее спад до включения в работу остальных цилиндров. Для ограничения спада угловой скорости коленвала впрыск топлива также осуществляют в цилиндр, следующий по порядку работы ДВС за цилиндром, в который осуществляют тестовый впрыск. Как правило, этот процесс осуществляют на такте, следующем за тактом, при котором выполняют тестовый впрыск.

Предложенный способ позволяет повысить точность управления работой ДВС в отсутствие датчика фаз за счет отнесения начала фазированного впрыска на режим пуска двигателя.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector