Autoservice-mekona.ru

Автомобильный журнал
4 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что такое реактивный двигатель и как он работает

В ЮУрГУ запустили ракетный двигатель, разрабатываемый в рамках УМНОЦ

Научно-лабораторную базу ЮУрГУ представили журналистам Уральского федерального округа, заинтересованным в освещении деятельности УМНОЦ. ЮУрГУ работает сразу над несколькими проектами в рамках научно-образовательного центра, ключевой из них – разработка двигателя для многоразовой ракеты-носителя. Чтобы показать успешные результаты деятельности ЮУрГУ, был продемонстрирован запуск двигателя, разработанного учеными вуза совместно со специалистами НИИМаш (г. Нижняя Салда).

Южно-Уральский государственный университет продемонстрировал главные площадки, где ведется работа над проектами в рамках Уральского межрегионального научно-образовательного центра «Передовые производственные технологии и материалы». Ключевые лаборатории и центры посетили журналисты из Екатеринбурга, Челябинска и Кургана в рамках пресс-тура, организованного 25 марта.

«Наш ключевой проект – разработка двигателя для ракеты-носителя «Корона», но мы выполняем большое количество проектов для предприятий Челябинской области, которые будут актуальны для всех предприятий Уральского федерального округа. Наша задача не только создать эффективную технологию, но и подготовить специалистов, которые в будущем смогут продолжать реализацию проектов по направлениям НОЦ», – сказал ректор Южно-Уральского государственного университета Александр Шестаков.

Начальной точкой стала Лаборатория суперкомпьютерного моделирования. В ЮУрГУ установлены два самых мощных суперкомпьютера в Уральском федеральном округе и вычислительный кластер «СКИФ Урал», на них выполняется более 250 исследований в год. Именно в Лаборатории суперкомпьютерного моделирования начинается работа над каждым проектом. Выполненные расчеты позволяют уменьшить количество физических испытаний готовых разработок, сэкономить время и ресурсы.

Яркий пример проекта, выполняемого с использованием суперкомпьютера ЮУрГУ, – комплекс управления экологическими рисками «Экомонитор». Он позволяет не только точно определить количество загрязняющих веществ, но и источники загрязнения.

Материаловедческими вопросами занимаются сотрудники научно-образовательного центра «Нанотехнологии». В НОЦ создают наноматериалы и проводят исследования широко используемых веществ – металлов и сплавов, керамики и стекол, строительных, полимерных, композиционных и прочих. Оборудование НОЦ «Нанотехнологии» используется для выполнения междисциплинарных проектов

Например, с использованием установок центра проводилась значительная часть лабораторных испытаний проекта переработки техногенных отходов медеплавильных предприятий. Его цель – извлекать из шлаков полезные компоненты, которые можно вернуть на производство, а остатки отправлять на производство пропанта.

Также в ЮУрГУ представили проект «Производство сотового заполнителя из препрегов на основе угле-, стекло- и базальтоволокна методом непрерывного формования». Он нацелен на производство материала с заданными характеристиками. Технической особенностью данного проекта является принципиально новый подход к формованию с организацией непрерывного процесса. Разработчики проекта, используя на входе технологической цепочки различные листы сырья (препреги), способны регулировать механические характеристики современных композитных материалов, оптимизируя их под конкретные задачи.

Физические характеристики создаваемых материалов проверяются в НИИ «Опытное машиностроение», там же создаются образцы изделий. В состав НИИ входят лаборатории композиционных материалов, конструирования оболочек электронных систем управления, машиностроения, физического моделирования термомеханических процессов, экспериментальной механики, а также ресурсный центр специальной металлургии и центр компьютерного инжиниринга.

Установленное в НИИ «Опытное машиностроение» оборудование позволяет разрабатывать новые детали, создавать их, проверять свойства изделий экспериментальным путем. Например, на станках изготавливали комплектующие для «Арктического автобуса» – транспорта, который рассчитан на работу в условиях Крайнего Севера. Аналогов такого автобуса сегодня нет.

«При аварийных ситуациях кабина жизнеобеспечения такого автобуса позволяет людям выдержать условия окружающей среды до приезда помощи. Даже если автобус провалится под лед, он в течение определенного количества времени может сохранять плавучесть. Специалисты ЮУрГУ работают над кабиной жизнеобеспечения, рассчитываем ее устойчивость в аварийных ситуациях, решаем вопросы управления транспортом», – пояснил к.т.н., директор НИИ «Опытное машиностроение» Рамиль Закиров.

Финальной точкой пресс-тура стали лаборатории НОЦ «Аэрокосмические технологии». В центре коллективного пользования в энергетике исследуются закономерности и режимы работы систем энергоснабжения. Работа ведется в одном из ключевых направлений УМНОЦ «Новая энергетика»: ученые используют солнечные батареи, установки для потребления энергии земли, ветроустановку.

Помимо центра, в состав НОЦ «Аэрокосмические технологии» входят лаборатории микропорошковых технологий, импульсных систем и быстропротекающих процессов и учебно-исследовательский лабораторный комплекс «Жидкостный ракетный двигатель». В нем проходят испытания макета нового ракетного двигателя, отрабатываются и оптимизируются его параметры.

Запуск жидкостного ракетного двигателя продемонстрировали участникам пресс-тура. Управление процессом обеспечивает система видеонаблюдения, с ее помощью ведется управление узлами комплекса и отладка режима его работы.

Шестнадцать таких двигателей будут установлены на демонстраторе двигательной установки для одноступенчатой ракеты-носителя многократного использования. Проект «Исследование, разработка и создание демонстраторов двигательной установки с центральным телом, системы управления контроля с искусственным интеллектом ракетно-космического комплекса с полностью многоразовой одноступенчатой ракетой-носителем и универсальной космической платформой» – визитная карточка УМНОЦ. На данный момент оформляется заявка на получение патента.

«В УМНОЦ объединены три серьезных направления: наука, производство, власть. Такой слияние впервые обеспечено на мировом уровне, и именно это, на мой взгляд, приведет проект к успеху. Мы рады тому, что наша программа была выбрана победителем из двадцати представленных инициатив. Все мероприятие в рамках УМНОЦ проводятся в соответствии с этой программой, и мы нацелены на получение результатов, важных не только для отдельных регионов, но и для Уральского федерального округа в целом», – прокомментировал проректор по научно-образовательным центрам и комплексным научно-техническим программам Сергей Ваулин.

ЮУрГУ первым из университетов, входящих в УМНОЦ, представил свои лаборатории и центры. Главная цель мероприятия – знакомство с научно-лабораторной базой, которая используется для реализации междисциплинарных проектов.

Южно-Уральский государственный университет (ЮУрГУ) – это университет цифровых трансформаций, где ведутся инновационные исследования по большинству приоритетных направлений развития науки и техники. В соответствии со стратегией научно-технологического развития РФ университет сфокусирован на развитии крупных научных междисциплинарных проектов в области цифровой индустрии, материаловедения и экологии. В Год науки и технологий ЮУрГУ примет участие в конкурсе по программе «Приоритет–2030». Вуз выполняет функции регионального проектного офиса Уральского межрегионального научно-образовательного центра мирового уровня.

Информационно-аналитический журнал

Директор ИАНТЭ А. Лопатин – о прорывной разработке КНИТУ-КАИ, способной серьезно повлиять на возможности беспилотников. В университете изготовлен двигатель-демонстратор, показывавшийся на международной выставке АКТО-2018 в Казани и выставке в честь Дня машиностроителя в Набережных Челнах. В планах – существенное улучшение конструкции двигателя и выход не только на российские, но и на международные рынки.

Беспилотная авиация стремительно вошла в нашу жизнь в последние годы, став одним из самых быстрорастущих сегментов рынка летательных аппаратов. Вместе с тем, ее возможности в существующем формате БПЛА с винтом в качестве движителя серьезно ограничены.

Директор Института авиации, наземного транспорта и энергетики (ИАНТЭ) КНИТУ-КАИ, заведующий кафедрой Реактивных двигателей и энергетических установок Алексей Лопатин рассказал о новом типе двигателя, способном значительно увеличить скорость и в целом расширить возможности беспилотников – турбореактивном двигателе малой тяги. В университете изготовлен двигатель-демонстратор, показывавшийся на международной выставке АКТО-2018 в Казани и выставке в честь Дня машиностроителя в Набережных Челнах. В планах – существенное улучшение конструкции двигателя и выход не только на российские, но и на международные рынки.

— Расскажите, пожалуйста, о том, что представляет собой турбореактивный двигатель малой тяги и для каких целей он создавался?

— Прежде всего – зачем вообще это надо? В Советском Союзе достаточно неплохо была развита авиационная промышленность и двигателестроение. После 1991 года все стало постепенно приходить в упадок. В наши дни авиационная отрасль более-менее начала восстанавливаться, а вот с двигателестроением остались сложности. Если мы говорим о глобальном конкурентном гражданском двигателестроении, то серьезный игрок на рынке в Российской Федерации пока только один – «ОДК-Пермские моторы» с двигателем ПД-14, который сейчас проходит сертификацию, и перспективным двигателем ПД-35 для более тяжелого класса воздушных судов. Планируется возродить двигателестроение на заводе Кузнецова в Самаре, который в свое время делал двигатели для Ту-144. Это знаменитая «кузнецовская» серия двигателей НК, которые применяются в том числе и на тех изделиях, которые производятся у нас на Казанском авиазаводе. Но на данный момент наибольших успехов добились, конечно же, «Пермские моторы» во главе с генеральным конструктором Александром Александровичем Иноземцевым.

Читать еще:  Что будет если зазор клапанов у двигателя меньше

Но выясняется, что время не стоит на месте. Воздушные суда, которые сейчас широко применяются, становятся все более миниатюрными. Фактически речь идет о том, что беспилотная авиация будет развиваться во всем мире наибольшими темпами, даже более динамичными, чем традиционная гражданская авиация. Поэтому в ближайшем будущем, в диапазоне 5-10 лет, вполне возможно, что возникнут концерны, которые создают беспилотную технику и которые по капитализации вполне могут обогнать и «Боинг», и «Эрбас» – именно потому, что такого рода БПЛА сейчас широко входят в жизнь. Беспилотная техника находит все более широкое применение. Таким образом, мы выходим на тему двигателей малой тяги. Потому что если по созданию двигателей для больших лайнеров проведены достаточно большие работы и сейчас этот задел реализуется, то малые двигатели как никто не производил, так никто и не производит.

— Соответственно, на этом рынке меньше конкуренция?

— Конкуренции практически нет. Рынок есть, потребность в малых двигателях – гигантская, а во всем мире существует лишь несколько – от трех до пяти – компаний, занимающихся созданием и разработкой реактивных двигателей малой тяги.

— То есть именно беспилотные летательные аппараты (БПЛА) – основная область применения таких двигателей?

— Двигатели малой тяги применяются в двух серьезных «ипостасях». Первая – это собственно БПЛА, а вторая – это тоже БПЛА, но некоего «эстетического» характера – я говорю об авиамоделизме. Поэтому один из сегментов применения таких двигателей – это некое «приложение к игрушке», если говорить по-серьезному. Но традиционно у нас понимание, что беспилотник – это что-то с пропеллером. Теперь, если мы берем не беспилотник «для игры», а беспилотник «для дела» – каким делом он может заниматься? Разумеется, кроме того, что он может развозить пиццу, почту и тому подобное – то, что, несомненно, будет, но не сегодня. Основные задачи – это отслеживание технического состояния трубопроводов, элементы геологоразведки в сложных местностях, наблюдение за границами, наблюдение за миграциями животных, рыболовный промысел и так далее. Все это подразумевает гражданскую и не только гражданскую полезную нагрузку. Но если мы рассмотрим этот вопрос качественно, отдельно, то выяснится, что вся приборная база, которая сейчас есть, позволяет проводить аэрофотосъемку, регистрацию всех этих параметров со скоростью в несколько тысяч кадров в секунду. Так же обстоит дело и с замером параметров. То есть современная элементная база позволяет это делать очень быстро. Встает вопрос: получается, мы можем повысить эффективность работы этих установок? За счет чего? Тормозом здесь является использование в БПЛА винтовой тяги. Винт – это 160 км/ч максимум. И если мы говорим о скоростях 500-800 км/ч, то здесь мы обращаемся к турбореактивным двигателям малой тяги. И здесь на авансцену и выходят те самые двигатели, которые вначале воспринимались как игрушки, а сейчас являются весьма значимым элементом, как и любой двигатель летательного аппарата.

Иными словами, эффективность выполнения полетного задания сдерживает не авионика, не приборная база, а скорость движения летательного аппарата. Чем она выше, тем более эффективно будет использоваться летательный аппарат в воздухе.

Мы пришли к тому, что нужен новый принцип движения. Что приводит в движение винт? Это либо традиционный автомобильный поршневой двигатель, либо электродвигатель. И тот, и другой имеют явные недостатки. Что касается поршневого двигателя – это известные вещи, связанные с провалами в циклах работы и т. д. Электродвигатель – это необходимость возить с собой большие батареи. Тут мы сталкиваемся с эффективностью использования авиационной техники в принципе, потому что летательный аппарат зачастую может нести только себя и запас электроэнергии. Поэтому газотурбинный двигатель весьма перспективен в этой области. Даже несмотря на то, что он не самый энергоэффективный с точки зрения расхода топлива, за счет скорости, которую он способен обеспечивать летательному аппарату, этого топлива вполне достаточно, чтобы БПЛА смог выполнить полетное задание и вернуться обратно.

— Вы сказали, что в мире производством данного типа двигателей занимается всего несколько компаний. Что это за компании?

— Да, от трех до пяти компаний занимается реактивными двигателями малой тяги. В Германии есть крупная компания Jetcat, на Тайване – компания Ice Hammer, в Чехии – PBS Velká Bíteš. Есть их филиалы. То есть, на самом деле, рынок в этом сегменте достаточно пуст. Почему? В нашей стране, к сожалению, технических требований к малым двигателям не сформировано. Малые реактивные двигатели у нас практически никто не производил, и если мы идем по пути сертификации его как большого двигателя, то на это попросту жизни не хватит. Законодательная база в этом плане не развита. Но нас никто не ограничивает в беспилотных летательных аппаратах, которые не несут ответственность за человеческую жизнь. На БПЛА нет людей на борту, и мы имеем возможность использовать все ресурсы этого летательного аппарата, включая современные двигательные системы.

Интерес к данной теме возник достаточно давно, но у нас страна мегапроектов. Вы понимаете, что создание микротурбореактивного двигателя – это не мегапроект. Поэтому, наверное, и не было серьезного интереса. Для любого крупного КБ это не «системоформирующий» заказ. Для крупных КБ – к примеру, для КБ Люльки, ОДК «Сатурн», омского КБ, рыбинского КБ – это просто неинтересно по масштабу. Эти предприятия живут масштабами. Малых компаний в этой области у нас нет. Остаются университеты. Потому что единственные организации, которые обладают интеллектуальными возможностями для создания таких двигателей – это как раз университеты. В той или иной степени такими двигателями занимаются различные крупные российские технические университеты. Но именно мы вышли на тот этап, когда мы создали двигатель-демонстратор. То есть это еще не полноценный двигатель. Это двигатель, который представляет технологические возможности для работы по этой тематике. Он пока переутяжелен. То есть, двигатель, который мы представляли, должен будет иметь расчетную тягу 10 кгс и вес до 1,5 кг. Сейчас он переутяжелен, это делается специально, так как предстоят огневые испытания и мы просто-напросто страхуемся, чтобы не сжечь его сразу же. Потому что есть теплонагруженные элементы, такие как турбина, оси, опоры двигателя. Есть сопловой аппарат, выходное устройство, которое также высокотеплонагружено. И там еще нужно провести замеры. Кроме расчетной методики нужно еще подтвердить ее экспериментальными данными. И, разумеется, это двигатель будет кардинально, кратно облегчен.

— То есть пока это не предсерийный образец?

— Разумеется. Все-таки если мы говорим об авиации – любой: гражданской, военной, беспилотной – надо прежде всего понимать, что изделие, которое создает максимальную прибавочную стоимость – это самолет. А 60-70% самолета – с точки зрения технической сложности, управления и так далее – это двигатель. Поэтому разработка и создание двигателя – это важнейший момент. Самое главное – мы не идем по пути наших коллег из других стран или других городов, которые берут зарубежный аналог и пытаются его копировать. Я хочу подчеркнуть, что тот двигатель, который представлен, – это полностью разработка ученых – специалистов кафедры Реактивных двигателей и энергетических установок (РДиЭУ) КНИТУ-КАИ.

Читать еще:  Ваз 2110 двигатель работает при выключенном зажигании

— Привлекались ли к созданию двигателя молодые специалисты и студенты?

— Конечно. Руководит работами по созданию двигателя доцент кафедры РДиЭУ Виталий Алексеевич Сыченков, с которым работают в основном молодые специалисты, студенты и аспиранты. Более того, в рамках одной кафедры такой двигатель создать тяжело. И на первом этапе мы привлекали сотрудников кафедры Теплотехники и энергетического машиностроения (ТиЭМ), доцентов Адольфа Степановича Лиманского и Андрея Владиславовича Ильинкова – по расчету турбины и компрессора. Планируется, что в рамках внутриуниверситетской кооперации на следующем этапе будет привлечена кафедра Радиоэлектроники и информационно-измерительной техники (РИИТ) профессора Юрия Кирилловича Евдокимова. Одной из проблем этих двигателей является их малый межремонтный ресурс – до 50 часов. Двигатели компактные, имеют частоту вращения до 150-160 тысяч оборотов в минуту. При таких оборотах большую нагрузку несут опоры, подшипники. Фактически это расходный материал. Наша задача, кроме тех «ноу-хау», которые используются в двигателе сейчас, кратно увеличить его ресурс за счет установки такой системы, как магнитный подвес ротора двигателя. Это как раз то, чем занимается профессор Евдокимов.

Ну, и предстоит важнейший финальный этап, когда мы будем заниматься цифровой моделью. Этап получения цифровой модели в современном мире является одним из основных моментов в разработке: «Если у вас нет цифровой модели, то вашего изделия не существует». Поэтому цифровая модель должна быть обязательно и она у нас будет, будет выполнена в современных программных комплексах.

Также стоит отметить, что мы планируем создать не один двигатель, а целую линейку двигателей – тягой 15, 25 и 30 кгс. Это перекрывает – и мы обсуждали это сегодня с индийской делегацией – большинство потребностей беспилотной техники. Самое главное, беспилотники используются в оборонных целях, в целях разведки, целеуказания и так далее, и этот момент очень важен. Беспилотник несет очень дороге оборудование. Скорость – помимо эффективности полетного задания, о котором мы уже упоминали, – это еще и возможность выживания летательного аппарата в сложных условиях.

— Меньше вероятность, что собьют.

— Конечно. Оборудование, которое стоит десятки, а иногда и сотни тысяч долларов, может проработать всего 10-15 минут и быть потеряно. Во-первых, это неприемлемо с финансовой точки зрения, а во-вторых, это неприемлемо с точки зрения обороноспособности страны.

— Есть ли в планах дальнейшее совершенствование конструкции двигателя?

Мое мнение, что задача университета – разрабатывать современные технологии, заниматься инжинирингом и воплощать новые технологии в жизнь. А производство – это не задача университета по большому счету. Здесь наш интерес в чем? Мы хотим заложить в двигатель технологии «Пятого технологического уклада». В частности, это аддитивные технологии. Совместно с кафедрой Лазерных технологий на этапе предсерийных испытаний мы планируем «вырастить» на основе аддитивных технологий нетеплонагруженные элементы, в том числе диск компрессора. Пока начнем с этого элемента, а дальше, возможно, будем двигаться в сторону высокотеплонагруженных элементов, таких как диск турбины, но там возможно использование только хромоникелевых сплавов…

— То есть от простого к сложному…

— Да. Дело в том, что там очень высокие температуры. Но чем хороши аддитивные технологии? Для каждого изделия есть такое понятие, как нормочас. То есть за сколько нормочасов работник способен сделать ту или иную конструкцию. Чем меньше нормочасы, тем меньше операций и тем меньше затраты. Современное развитие аддитивных технологий позволяет –в том числе в нашем университете – изготовить диски компрессора и даже турбины, которые не нуждаются в последующей тонкой механической обработке. Соответственно, мы экономим огромные финансовые ресурсы в серийном производстве. При тех же самых технических характеристиках это приведет к резкому удешевлению конструкции двигателя.

На самом деле, здесь абсолютно прагматичная идеология. Если мы сейчас не заложим технологии пятого технологического уклада, мы не сможем создать продукт, который будет востребован глобально.

— Где может быть развернуто серийное производство двигателя?

— Очень серьезно обсуждаются возможности локализации производства и российскими, и зарубежными партнерами – но на территории РФ. Дело в том, что к сожалению или к счастью тот технологический задел, который есть у нас в стране, интеллектуальный уровень позволяют нам с уверенностью говорить, что мы это можем сделать. На самом деле сделать авиационный двигатель могут лишь немногие страны. Существуют наземные энергетические установки, которые тоже в основе своей используют газотурбинный двигатель, но уровень технологий и ресурсов, заложенный в них, кратно меньше, чем в авиационных двигателях. И поэтому те страны и организации, которые могут создать авиационные двигатели, все остальное смогут создать точно. Мы берем по верхней планке. Плюс ко всему, те потребности, которые сейчас имеются, позволяют нам говорить, что мы можем быть конкурентными в мире. Мы не пытаемся создать двигатель, который будет интересен только здесь, в России. Это двигатель для глобального рынка и глобальной конкуренции.

NASA предложили ядерный двигатель

В рамках подготовки NASA к высадке на Марс в 2035 г. американская компания Ultra Safe Nuclear Technologies (USNT) из Сиэтла предложила свое решение – ядерный тепловой двигатель (NTP). Его использование позволит людям добраться с Земли до Марса всего за три месяца. По словам руководителя USNT Майкла Идса, «ракеты с ядерными двигателями будут более мощными и вдвое более эффективными, чем с химическими двигателями, используемыми сегодня, а это означает, что они будут летать дальше и быстрее, сжигая при этом меньше топлива, что позволит человечеству уйти с околоземной орбиты в дальний космос».

USNT предлагает классическое решение – ядерный двигатель с использованием сжиженного водорода в качестве рабочего тела: ядерный реактор вырабатывает тепло из уранового топлива, эта энергия нагревает жидкий водород, проходящий по теплоносителям, который расширяется в газ и выбрасывается через сопло двигателя, создавая тягу. Одна из основных проблем при создании такого типа двигателей – найти урановое топливо, которое может выдерживать резкие колебания температуры внутри двигателя. В USNT утверждают, что решили эту проблему, разработав топливо, которое может работать при температурах до 2400 градусов Цельсия. Топливная сборка содержит карбид кремния: этот материал, используемый в слое триструктурально-изотропного покрытия, образует газонепроницаемую преграду, препятствующую утечке радиоактивных продуктов из ядерного реактора, защищая космонавтов. Той же цели – защите экипажа – служит особая архитектура ракеты, максимально разделяющая пилотируемую часть и ядерный двигатель. Запас жидкого водорода, хранящийся между двигателем и зоной экипажа, будет блокировать радиоактивные частицы, действуя как хороший радиационный экран. Кроме того, для защиты экипажа и на случай непредвиденных ситуаций ядерный двигатель не будет использоваться во время старта с Земли – он начнет работу уже на орбите, чтобы минимизировать возможные повреждения в случае аварии или нештатной работы.

Ядерный ракетный двигатель не новинка. В США в 1960-х гг. существовал проект NERVA – совместная программа Комиссии по атомной энергии США и NASA по созданию такого двигателя, продолжавшаяся до 1972 г. Ее результатом стала демонстрация реальности использования подобного двигателя для полета к Марсу. Сейчас наибольший интерес вызывают проекты создания транспортных модулей для полетов на Луну, Марс и в дальний космос. Такие проекты есть и в США, и в России, говорит эксперт в области ядерной физики и популяризатор ядерных технологий Дмитрий Горчаков: «Проект USNT предполагает, что ядерный реактор будет использоваться как источник тепла, более эффективный, чем химическое топливо, для нагрева рабочего тела и ускорения ракеты уже в космическом пространстве. Однако мощности проекта не указываются».

Читать еще:  Щелкает в двигателе 409 двигатель что может быть

В России уже более 10 лет силами «Роскосмоса» и «Росатома» ведется разработка транспортно-энергетического модуля с ядерным реактором небывалой для космических аппаратов мощности – в несколько мегаватт (тепловых), что в десятки раз выше любых когда-либо запущенных в космос реакторов. Он может использоваться как в качестве источника электроэнергии для самого корабля или космической базы, так и для питания электроэнергией ионных двигателей, уже использующихся в космонавтике. Однако концепция этого проекта не раз менялась, а проблемы с финансированием и отсутствие внятных планов его использования пока вызывают сомнения в том, что в ближайшие годы работа над аппаратом будет активно продвигаться.

Куда ближе к реализации другой космический реактор – американский Kilopower электрической мощностью до 10 кВт. Как и российский проект, это не ядерный двигатель, а источник электроэнергии. Он уже испытывается в железе и вполне может стать первым мощным ядерным источником энергии, отправившимся в космос в XXI в. для питания лунной или марсианской базы или космического корабля с ионными двигателями.

Отображение сетевого контента Отображение сетевого контента

Зав. кафедрой: Лопатин Алексей Александрович

кандидат технических наук, доцент

Телефон (приемная): +7 (843) 231 97 70 (вн. 16-70)

Кафедра Реактивных двигателей и энергетических установок (РДЭУ) является одной из основных кафедр КНИТУ-КАИ. Она является выпускающей кафедрой по двум учебным направлениям, а также ведет исследования по приоритетным научным направлениям. Кафедра осуществляет целенаправленный процесс организации деятельности обучающихся по овладению знаниями, умениями, навыками и компетенциями и осуществляет подготовку квалифицированных специалистов в соответствии с государственными стандартами по специальностям приписанными по статусу кафедре.

Реализуемые направления подготовки/специальности:

Код и наименование направления подготовки/специальности24.03.05 Двигатели летательных аппаратов24.04.05 Двигатели летательных аппаратов24.05.02 Проектирование авиционных и ракетных двигателей
Уровень образованиябакалавриатмагистратураспециалитет
Учебный планпосмотретьпосмотретьпосмотреть
Календарный учебный графикпосмотретьпосмотретьпосмотреть
Описание ОП ВОпосмотретьпосмотретьпосмотреть
Рабочие программы дисциплинпосмотретьпосмотретьпосмотреть
Рабочие программы практикпосмотретьпосмотретьпосмотреть
Рабочая программа воспитания и календарный план воспитательной работыпосмотретьпосмотретьпосмотреть
Оценочные материалыпосмотретьпосмотретьпосмотреть
Методические материалыпосмотретьпосмотретьпосмотреть

Кафедра РДЭУ является структурным подразделением Института авиации, наземного транспорта и энергетики (ИАНТЭ) КНИТУ-КАИ. Она относится к группе выпускающих кафедр по соответствующим специальностям по принятым образовательным стандартам. Руководителями кафедры являлись ведущие ученые, организаторы науки, такие как Румянцев С. В., Застела Ю. К., Алемасов В. Е. Талантов А. В., Мингазов Б. Г. Кафедра активно ведет свою деятельность в области подготовки высококвалифицированных специалистов в области авиационного, ракетного двигателестроения и наземной энергетики, а также в научных исследованиях, связанных с созданием авиационных двигателей и энергетических установках, а также увеличением эффективности рабочих процессов в них.

История кафедры

Кафедра «Реактивные двигатели и энергетические установки» создана на базе кафедр воздушно-реактивных двигателей и кафедры ракетных двигателей. Кафедра ВРД была создана 13 августа 1938 года. Первым заведующим кафедрой был Румянцев Сергей Васильевич, который без перерыва руководил ею до 13 сентября 1953 года, одновременно он являлся ректором КАИ. Кафедра Ракетных двигателей была создана 1 мая 1945 года В. П. Глушко и С. П. Королевым.

Первым заведующим кафедрой был Румянцев Сергей Васильевич (организатор и первый ректор РУДН), который без перерыва руководил ею до 13 сентября 1953 года года. Впоследствии ректор КАИ, зам. Министра образования СССР, первый ректор университета Дружбы народов (УДН).

В конце сороковых годов по инициативе профессора Кужмы А. П., за чертой города Казани была построена первая очередь лаборатории по испытанию полноразмерных турбореактивных двигателей с двумя боксами, так называемый объект № I, Первый газотурбинный двигатель РД-20 в этой лаборатории был запущен в 1949 году. Через год был создан стенд с турбореактивным двигателем РД-500. Проект этих установок разработали инженеры и аспиранты В. Е. Алемасов, А. В. Талантов, А. В. Ананичев, Н. А. Гаврилушкина, В. В. Бердников. С этого момента лаборатория газотурбинных двигателей начала быстро развиваться, как в направлении создания учебных, так и научно-исследовательских установок.

Возросший научный авторитет кафедры, ее постоянное стремление к развитию научно-исследовательских работ по горению топлив в камерах сгорания авиационных ВРД, рост научных кадров и созданная научно-техническая база лаборатории горения позволила организовать при кафедре в 1966 году отраслевую лабораторию горения в потоке МАП. Научная деятельность отраслевой лаборатории формировалась в рамках тематики ЦИАМа, а научное руководство осуществлялось д.т.н. профессором А. В. Талантовым, который был инициатором организации этой лаборатории, ее научным идеологом. На кафедре ракетных двигателей велись обширные исследования по созданию расчета высокотемпературных процессов в двигателях, на основании которых были написаны учебники, создан многотомный справочник продуктов сгорания различных ракетных топлив. Эти исследования явились основанием для защит кандидатских и докторских диссертаций, а также присвоения ученых званий профессора и доцента многочисленным аспирантам и соискателям, а также присвоения званий академика РАН В. Е. Алемасову и члена-корреспондента АН РТ А. Ф. Дрегалину.

Основное направление деятельности кафедры. Обучение студентов ведут 20 преподавателей, в их числе 5 профессоров д.т.н. и 14 доцентов к.т.н. Подготовка специалистов в области авиационных и ракетных двигателей ведется по направлениям «Двигатели летательных аппаратов», «Проектирование авиационных двигателей и энергетических установок»

Научно-технические направления

Кафедра охватывают различные сферы двигателестроения и энергетических установок. Традиционно на кафедре развиваются исследования связанные с процессами в камерах сгорания ГТД. Это — экспериментальные исследования горения в турбулентном потоке, газодинамической стабилизации пламени, создание расчетных моделей внутри камерных процессов, включая исследование по малоэмиссионному сжиганию топлив.

Большая роль принадлежит в практическом применении результатов газодинамических исследований в различных промышленных устройствах.

Кроме того исторически на кафедре развиваются исследования высокотемпературных процессов в энергетических установках и их практического применения, а также исследование теплозащитных покрытий.

Также и по перспективным направлениям в авиационном двигателестроении и наземном применении.

Развиваются теоретические основы высокотемпературного реагирования, изучаются проблемы, связанные с созданием гиперзвуковых двигателей, проводится анализ сложных термодинамических циклов, а также 3D моделирование газотурбинных двигателей и энергоустановок и др.. В отраслевой лаборатории были созданы уникальные модельные исследовательские установки для изучения процессов горения в двигателях летательных аппаратов. Были созданы приборы и освоены методики измерения характеристик турбулентности, измерения состава продуктов сгорания, в том числе токсичных веществ.

Параллельно также развиваются новые научные направления, связанные с прочностью и эксплуатацией двигателей.

Наряду с экспериментальными исследованиями проводятся работы по математическому моделированию процессов в камерах сгорания с применением различных топлив и оптимизацией выхлопных устройств.

На кафедре успешно разрабатываются теплогенераторы различного назначения: расходомеры и счетчики газа высокой точности измерений.

Выпускники успешно работают на крупнейших промышленных отечественных и зарубежных предприятиях, в научно-исследовательских и проектных институтах, исследовательских центрах, аналитических лабораториях и консалтинговых компаниях.

Контактная информация

Корпоративная электронная почта: info@kafedrardeu.ru

Телефон/ Факс: +7 (843) 231 97 70 (вн. 16-70)

Телефон (преподавательская ауд. 247): +7 (843) 231 01 44 (вн.11-44)

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector