Autoservice-mekona.ru

Автомобильный журнал
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что такое номинальный ток холостого хода асинхронного двигателя

Как определить рабочий ток электродвигателя?

Номинальный ток электродвигателя, при котором возможна его длительная работа, связан с номинальной мощностью устройства и его КПД следующим выражением: Iн=1000*Pн/(Uн*cosφ√η), где Рн – мощность, Uн – номинальное напряжение, которым питается электродвигатель, η – КПД, а cosφ – коэффициент мощности двигателя.

Как узнать сколько ампер электродвигатель?

Как определить потребляемый ток электродвигателя

Для 3 фазных двигателей, подключенных по схеме звезда на 380 Вольт, необходимо умножить мощность в киловаттах на 2. Например, при мощности 5 киловатт ток будет равен 10 Ампер.

  1. Что такое акб в машине
  2. Что такое втягивающее на стартере
  3. Почему плохо крутит стартер
  4. Как завести стартер отверткой
  5. Как подключить асинхронный двигатель
  6. Как подключить двигатель на 220 вольт
  7. Какое масло заливать в хендай крета
  8. Какой аккумулятор на бмв е39
  9. Как подключить асинхронный двигатель на 220

Как узнать рабочий ток двигателя?

Зная номинальную мощность двигателя (из паспорта) можно определить его номинальный ток. При включении двигателя в трехфазную сеть 380 В номинальный ток можно посчитать по следующей формуле: Iн = Pн/(√3Uн х η х сosφ), где Pн — номинальная мощность двигателя в кВт, Uн — напряжение в сети, в кВ (0,38 кВ).

Как можно определить коэффициент полезного действия электродвигателя?

(КПД): η = Aполезн/Aзатрач = Pполезн/Pзатрач. Иногда его выражают в процентах, тогда полученное по этой формуле число домножают на 100%. С учетом наших рассуждений КПД не может быть равен или быть более 1 (более 100%). В этой работе мы должны определить КПД электродвигателя.

Какой должен быть ток холостого хода электродвигателя?

В частности, ток холостого хода асинхронного электродвигателя в зависимости от мощности и частоты вращения составляет в среднем 20-90% от номинального.

Как определить мощность электродвигателя по току?

Чтобы подобрать двигатель для конкретного механизма вы можете определить мощность двигателя по крутящему моменту и количеству оборотов, которые требуются на валу. Для этого используют формулу: P=M*n/9550, где M – момент, n – число оборотов, 9550 – коэффициент.

Как определить мощность электродвигателя мультиметром?

Запишите показания до включения мотора, дайте ему поработать ровно 10 минут (лучше воспользоваться секундомером). Снимите новые показания счетчика и путем вычитания узнайте разницу. Умножьте эту цифру на 6. Полученный результат отображает мощность двигателя в кВт.

Как рассчитать рабочий ток асинхронного двигателя?

Номинальный ток электродвигателя, при котором возможна его длительная работа, связан с номинальной мощностью устройства и его КПД следующим выражением: Iн=1000*Pн/(Uн*cosφ√η), где Рн – мощность, Uн – номинальное напряжение, которым питается электродвигатель, η – КПД, а cosφ – коэффициент мощности двигателя.

Как определить номинальный ток асинхронного двигателя?

Формула для расчета номинального тока трехфазного асинхронного электродвигателя переменного тока: Iн=Pн/(√3*Uн*cosφн*ηн) или Pн/(1,73*Uн*cosφн*ηн), где Рн — номинальная мощность электродвигателя (Вт);

Как измерить пусковой ток двигателя?

Первый способ — использовать осциллограф. Взять шунт (например, резистор 0,1. 1 Ом, чем меньше и прецизионней, тем лучше), и посмотреть на нём осциллограмму в момент пуска. Далее из максимального амплитудного значения определяем действующее напряжение (поделить на корень из 2), далее по закону Ома считаем пусковой ток.

Как определить мощность двигателя формула?

Для определения мощности двигателя в киловаттах, когда известен крутящий момент, можно по формуле такого вида: P = Mкр * n/9549, где: Mкр – крутящий момент (Нм), n – обороты коленвала (об./мин.), 9549 – коэффициент для перевода оборотов в об/мин.

Как рассчитать коэффициент полезного действия двигателя?

Отношение совершённой полезной работы двигателя к энергии, полученной от нагревателя, называют коэффициентом полезного действия теплового двигателя. КПД теплового двигателя определяют по формуле: КПД = A n Q 1 или КПД = Q 1 − Q 2 Q 1 ⋅ 100 % .

Как определить мощность 3 х фазного электродвигателя?

Мощность трехфазного тока равна тройной мощности одной фазы. При соединении в звезду PY=3·Uф·Iф·cosфи =3·Uф·I·cosфи. При соединении в треугольник P=3·Uф·Iф·cosфи=3·U·Iф·cosфи. На практике применяется формула, в которой ток и напряжение обозначают линейные величины и для соединения в звезду и в треугольник.

Что понимают под режимом холостого хода двигателя?

Под холостым ходом двигателя понимается его работа без нагрузки на валу. Из-за механических потерь частота вращения ротора отличается от частоты вращения поля на 1—2 %. … Такой режим называется режимом идеального холостого хода.

Что такое холостой ход асинхронного двигателя?

Как было сказано выше, холостой ход – это режим работы асинхронного электродвигателя, при котором на валу нет нагрузки. В этом случае устройство с точки зрения электротехники схоже с трансформатором.

Читать еще:  Через какой пробег меняют масло синтетику в двигателе

Что такое номинальная сила тока?

Номинальный ток — наибольший допустимый по условиям нагрева токопроводящих частей и изоляции ток, при котором оборудование может работать неограниченно длительное время.

Что такое номинальный ток холостого хода асинхронного двигателя

Выпускается с января 1996 г.

Магнитогорский государственный технический университет им. Г.И. Носова

Электротехнические системы и комплексы

ISSN (online) 2658-3151

Импакт-фактор РИНЦ: 0,671

doi 10.18503/2311-8318

Лебедев Г.Г., Сарваров А.С., Вечеркин М.В., Петушков М.Ю., Косматов В.И. Определение тока холостого хода асинхронного электродвигателя

  • Статья с аннотацией
  • Об авторах
  • Список литературы

Аннотация

В настоящее время в связи с устойчивой тенденцией применения АД практически во всех отраслях промышленности часто возникает необходимость в определении параметров двигателя, которых нет в среде справочных данных. Требуются знания параметров АД в различных режимах работы: холостой ход, номинальный режим, произвольный нагрузочный режим, пусковой режим. Их расчет базируется на схемах замещения, точность расчета параметров которых во многом зависит от точности расчета тока и потерь холостого хода. В данной статье рассмотрен ряд известных в теории и практике электрических машин методик расчета тока и потерь холостого хода. Проведено обоснование возможности расчета тока холостого хода на основе баланса реактивной мощности АД для номинального режима по паспортным данным двигателя. Получено рациональное выражение для расчета тока холостого хода. Рассмотренные методы расчета тока холостого хода и данные, приведенные в справочной литературе, исследованы применительно к двум типам АД из группы мощности до 100 кВт и мощностью 1000 кВт. В рамках исследования проведены расчеты тока холостого хода по паспортным данным рассмотренных двигателей и дана оценка полученных результатов. Установлено, что выражение для расчета тока холостого хода, полученное из условия баланса реактивной мощности в номинальном режиме, дает наиболее близкие значения к результатам расчета с использованием базового метода, основанного на данных для номинального режима и их величин при частичных нагрузках на двигатели.

Ключевые слова

Асинхронный двигатель, параметры, энергетическая диаграмма, номинальный режим, частичная нагрузка, ток холостого хода, методы расчета, расчетные графики, кривые энергетических показателей, табличные данные, баланс реактивной мощности, сопоставление результатов.

Лебедев Геннадий Григорьевич – инженер, ООО «Челябинский тракторный завод — УРАЛТРАК», г. Челябинск, Россия.

Сарваров Анвар Сабулханович – д-р техн. наук, профессор, кафедра автоматизированного электропривода и мехатроники, Магнитогорский государственный технический университет им. Г.И. Носова, г. Магнитогорск, Россия. E-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра. .

Вечеркин Максим Викторович – канд. техн. наук, доцент каф. физики, институт естествознания и стандартизации, ФГБОУ ВО «Магнитогорский государственный технический университет им Г.И. Носова», г. Магнитогорск, Россия. E-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра. . ORCID: https://orcid.org/0000-0002-8679-9831.

Петушков Михаил Юрьевич – д-р техн. наук, доцент, профессор, кафедра электроники и микроэлектроники, Магнитогорский государственный технический университет им Г.И. Носова, г. Магнитогорск, Россия. E-mail: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра. .

Косматов Валерий Иванович – канд. техн. наук, профессор, кафедра автоматизированного электропривода и мехатроники, Магнитогорский государственный технический университет им. Г.И. Носова, г. Магнитогорск, Россия.

1. Браславский И.Я., Ишматов З.Ш., Поляков В.Н. Энергосберегающий асинхронный электропривод / под ред. И.Я. Браславского. М.: Издательский центр «Академия», 2004. 256 с.

2. Головин В.В., Разворотнев В.П., Юдин А.Ю. Масштабное внедрение частотно-регулируемых электроприводов в ОАО «ММК» // Труды VII Международной (ХIII Всероссийской) научно-технической конференции по автоматизированному электроприводу; ФГБОУ ВПО «Ивановский государственный энергетический университет имени В.И. Ленина». Иваново, 2012. С. 448-453.

3. Мугалимов Р.Г., Мугалимова А.Р. Энергосберегающие асинхронные двигатели с компенсацией реактивной мощности // Известия академии наук. Энергетика. 2013. №5. С. 30-45.

4. Venkataraman B., Godsey B., Premerlani W., Shulman E., Thakur M., Midence R. Fundamentals of a Motor Thermal Model and its Applications in Motor Protection // Conf. Record of 2005 Annual Pulp and Paper Industry Technical Conference. Jacksonville, FL, USA, 20–23 June, 2005, pp. 11–28. Doi:10.1109/PAPCON.2005.1502046.

5. Гейлер Л.Б. Справочник электрика промышленных предприятий. Минск: Беларусь, 1963. 588 с.

Читать еще:  Высокие обороты холостого хода на прогретом двигателе калина

6. Лебедев Г.Г. Определение параметров асинхронного двигателя напряжением до1000 В при отсутствии паспорта // Промышленная энергетика. 1981. №2. С. 15-16.

7. Литвак Л.В. Рациональная компенсация реактивных нагрузок на промышленных предприятиях. М.: Госэнергоиздат, 1963.

8. Электротехнический справочник. Т.3, кн.2 / гл. редактор И.Н. Орлов. 6 изд. М.: Энергоиздат, 1982, 560 с.

9. Мощинский Ю.А., Беспалов В.Я., Кирякин А.А. Определение параметров схемы замещения асинхронной машины по каталожным данным // Электричество. 1998. №4. С. 38-42.

10. Шеремет А.И., Шевченко Г.С. Определение параметров Т-образной схемы замещения асинхронного двигателя на основе опыта холостого хода // Научный Вестник ДГМА. 2017. №3. С. 104-108.

11. Донской Н.В. Определение параметров асинхронных двигателей по паспортным данным и пусковым характеристикам // Труды VII Международной (ХIII Всероссийской) научно-технической конференции по автоматизированному электроприводу: ФГБОУ ВПО «Ивановский государственный энергетический университет имени В.И. Ленина». Иваново, 2012. С. 196-201.

12. Регулируемые асинхронные двигатели в сельскохозяйственном производстве / под ред. Д.Н. Быстрицкого. М.: Энергия, 1975. 399 с.

13. Асинхронные двигатели серии 4А: справочник / А.Э. Кравчик и др. М.: Энергоатомиздат, 1982.

14. Сыромятников И.А. Режимы работы асинхронных и синхронных двигателей. М.: ГЭИ, 1969. 527 с.

15. Справочник по электрическим машинам / под общ. ред. И.П. Копылова и Б.К. Клокова. Т.1. М.: Энергоатомиздат, 1988. 456с.

16. Макеев М.С., Кувшинов А.А. Алгоритм расчета параметров схемы замещения асинхронного двигателя по каталожным данным //Вектор науки ТГУ. 2013. №1(23). С. 108-112.

17. Качин С.И., Чернышев А.Ю., Качин О.С. Электрический привод: учеб.-метод. пособие. Томск: Изд-во Томского политехнического университета, 2009. 157 с.

Определение мощности электродвигателя без бирки

Общепромышленные асинхронные электродвигатели имеют срок службы и подлежат периодичной замене, ремонту. Дефекты электрической части, замыкание, обрывы, износ подшипников, перемотка, нарушение центровки, сырая обмотка. При отсутствии паспорта, бирки на двигателе возникает вопрос: как узнать мощность электродвигателя без таблички или технических характеристик?

Параметры для определения мощности электродвигателя:

Определение мощности двигателя по диаметру вала и длине

Простейшие способы определения мощности и марки двигателя – габаритные размеры – вал или крепежные отверстия. В таблице указаны длины и диаметры валов (D1) и длина (L1) для каждой модели асинхронного промышленного трехфазного мотора. Габариты электродвигателей АИР:

  • АИР 56
  • АИР 63
  • АИР 71
  • АИР 80
  • АИР 90
  • АИР 100
  • АИР 112
  • АИР 132
  • АИР 160
  • АИР 180
  • АИР 200
  • АИР 225
  • АИР 250
  • АИР 280
  • АИР 315
  • АИР 355

Мощность, (Р) кВт3000 об/мин1500 об/мин1000 об/мин750 об/мин
D1, ммL1, ммD1, ммL1, мм>D1, ммL1, ммD1, ммL1, мм
1,52250225024502860
2,22428603280
3243280
42860286038
5,5328038
7,532803848110
113848110
15421104811055
18,55560140
22485560>140
3065
3755>601406575
457575
556580170
75651407580170
9090
110708017090
132100210
1607590100210
200
25085170100210
315

Расчет мощности электродвигателя по габаритам и крепежным размерам

Таблица подбора мощности двигателя по крепежным отверстиям на лапах (L10 и B10):

Что такое номинальный ток холостого хода асинхронного двигателя

Холостой ход – режим работы трансформатора при разомкнутой вторичной обмотке , .

Уравнения напряжений и токов принимают следующий вид:

Магнитный поток в трансформаторе является переменным, поэтому магнитопровод непрерывно перемагничивается, в нем имеются магнитные потери от гистерезиса и вихревых токов, наводимых переменным магнитным потоком в пластинах электротехнической стали.

Ток холостого хода имеет две составляющие: активную , обусловленную магнитными потерями, и реактивную , представляющую собой намагничивающий ток,

Обычно активная составляющая тока холостого хода невелика, не превышает 10% от тока I0, и поэтому не оказывает заметного влияния на ток холостого хода.

Так как полезная мощность при работе трансформатора на холостом ходу равна нулю, то активная мощность P0, потребляемая в этом режиме, расходуется на магнитные потери в магнитопроводе PM и на

электрические потери в первичной обмотке .

Учитывая, что ток холостого хода I0 обычно не превышает 2-10 % от номинального тока первичной обмотки , электрическими потерями можно пренебречь и считать потерями холостого хода магнитные потери в электротехнической стали магнитопровода.

Электрическая схема замещения и векторная диаграмма трансформатора имеют следующий вид (рис.1.6, 1.7).

Угол , на который вектор результирующего магнитного потока отстает по фазе от тока , называют углом магнитных потерь. Этот угол увеличивается с ростом активной составляющей тока холостого хода , т.е. с ростом магнитных потерь в магнитопроводе трансформатора.

1.5. Опыт короткого замыкания

Короткое замыкание – режим работы трансформатора при замкнутой накоротко вторичной обмотке , .

В условиях эксплуатации, когда к первичной обмотке подведено номинальное напряжение , короткое замыкание является аварийным режимом, представляет большую опасность для трансформатора. Только установившийся ток короткого замыкания превышает номинальный ток в 10-20 раз.

Опыт короткого замыкания не представляет опасности для трансформатора, так как к первичной обмотке подводят пониженное напряжение, при котором токи в обеих обмотках равны номинальным.

Это пониженное напряжение называется номинальным напряжением короткого замыкания и обычно выражают в процентах от номинального

Ранее было установлено, что результирующий магнитный поток в магнитопроводе трансформатора приблизительно пропорционален напряжению первичной обмотки. Следовательно, в опыте короткого замыкания результирующий магнитный

поток в магнитопроводе мал, для его создания требуется настолько малый намагничивающий ток, что им можно пренебречь, и поэтому схема замещения не содержит ветви намагничивания.

Уравнения напряжений и токов принимают следующий вид:

где Zk — сопротивление трансформатора при опыте короткого замыкания; rk, xk — активная и реактивная составляющие сопротивления Zk.

Электрическая схема замещения и векторная диаграмма представлены на рис.1.8, 1.9.

Прямоугольный треугольник называют треугольником короткого замыкания, а его катеты являются активной и реактивной составляющими напряжения короткого замыкания

Так как при опыте короткого замыкания результирующий поток мал по сравнению с его значением при номинальном напряжении первичной обмотки, то магнитными потерями в магнитопроводе можно пренебречь. Следовательно, активная мощность Pk, потребляемая в этом режиме, расходуется на электрические потери в обмотках трансформатора

Векторные диаграммы трансформатора при нагрузке

Для их построения используется электрическая схема замещения приведенного трансформатора и основные уравнения напряжений и токов. Векторные диаграммы наглядно показывают соотношения и фазовые сдвиги между токами, ЭДС, напряжениями трансформатора.

Для определения угла сдвига фаз между и необходимо знать характер нагрузки. При активно-индуктивной нагрузке (рис.1.10) вектор отстает по фазе от на угол

При активно-емкостной нагрузке (рис.1.11) вектор опережает по фазе на угол

При значительной емкостной составляющей нагрузки напряжение может оказаться больше, чем ЭДС при холостом ходе . Кроме того, реактивная составляющая тока вторичной обмотки совпадает по фазе с реактивной составляющей тока холостого хода , оказывая подмагничивающее действие на магнитопровод. Это вызывает уменьшение тока первичной обмотки по сравнению с его значением при активно-индуктивной нагрузке, когда составляющая оказывает размагничивающее действие.

Рассмотренные векторные диаграммы нагруженного трансформатора из-за их сложности не могут быть использованы для практических расчетов. По аналогии с опытом короткого замыкания в трансформаторах, работающих с нагрузкой близкой к номинальной, пренебрегают током холостого хода и считают, что .

В результате схема замещения трансформатора приобретает упрощенный вид, в ней отсутствует ветвь намагничивания. Схема состоит из последовательно включенных элементов , , (рис.1.12,а).

Упрощенную векторную диаграмму строят по значениям номинального напряжения первичной обмотки , номинального тока первичной обмотки , коэффициента мощности и параметрам треугольника короткого замыкания , , .

Поясним построение упрощенной векторной диаграммы трансформатора при активно-индуктивной нагрузке (рис.1.12,б). Произвольно, например, на оси ординат из ее начала строят вектор тока . Под углом проводят линию, на которой будет расположен вектор напряжения в соответствии с характером нагрузки. Строят — треугольник короткого замыкания. Катет ВС, равный активной составляющей напряжения короткого замыкания, совпадает по фазе с вектором тока. Катет АВ, равный реактивной составляющей напряжения короткого замыкания, опережает по фазе вектор тока на 90 .

Сдвигают треугольник АВС, не изменяя ориентации его сторон, так, чтобы вершина С находилась на линии, направленной под углом к вектору тока, до тех пор пока расстояние от начала координат до вершины А не станет равным .

После этого определяют угол фазового сдвига между током первичной обмотки и ее напряжением 1 а также величину вектора . Все построения векторов выполняются в масштабе.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector