Autoservice-mekona.ru

Автомобильный журнал
5 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что такое коэффициент полезного действия двигателя внутреннего сгорания

способ повышения коэффициента полезного действия двигателя внутреннего сгорания

Изобретение относится к двигателям внутреннего сгорания и может быть использовано в бензиновых и двигателях типа «Дизель». Способ повышения коэффициента полезного действия двигателя внутреннего сгорания заключается в подаче энергоносителя в надпоршневую полость в виде двух вводов, его поджига, причем второй ввод осуществляют при движении поршня во время рабочего хода, при этом угол между шатуном и кривошипом коленчатого вала составляет 150 — 190 o , а номинальная масса энергоносителя обоих вводов остается постоянной для данного режима работы. 2 з.п.ф-лы, 2 ил.

Формула изобретения

1. Способ повышения коэффициента полезного действия двигателя внутреннего сгорания, заключающийся в подаче энергоносителя в надпоршневую полость в виде двух вводов и его поджига, отличающийся тем, что второй ввод энергоносителя осуществляют при движении поршня во время рабочего хода.

2. Способ по п. 1, отличающийся тем, что второй ввод энергоносителя осуществляют при угле между шатуном и кривошипом коленчатого вала 150 — 190 o .

3. Способ по п. 1, отличающийся тем, что номинальная масса энергоносителя обоих вводов его остается постоянной для данного режима работы.

Описание изобретения к патенту

Изобретение относится к улучшению преобразования тепловой энергии двигателя внутреннего сгорания (ДВС) в механическую энергию (повышение КПД). Предложение может быть использовано в бензиновых ДВС и двигателях типа «Дизель».

Известен цикл Отто, который используется во всех бензиновых ДВС, в которых рабочий цикл осуществляется путем всасывания горючей смеси (воздуха с бензином) при движении поршня от головки цилиндра с последующим перемещением поршня к головке цилиндра с поджигом при положении поршня в верхней точке (Элементарный учебник физики. Под ред. Ландсберга.-М., т.1, 1975, с. 639-642).

Недостатком такого цикла следует считать подвод тепловой энергии при постоянном объеме, когда максимальное усилие фактически не используется для вращения коленчатого вала и усилие просто изгибает коленчатый вал — изохорический процесс (Справочник по физике. Под ред. Яворского.-М.: Наука, 1964, с. 158). Далее процесс развивается со снижением давления до атмосферного.

Наиболее близким, выбранным в качестве прототипа, является способ работы ДВС, заключающийся во впрыске энергоносителя в надпоршневую полость в виде двух вводов и его поджига.

Однако при осуществлении рабочего хода поршнем происходит падение давления, а следовательно, и силового воздействия на коленчатый вал, снижение выходного момента на валу двигателя.

Технической задачей изобретения является устранение указанных недостатков: повышение среднего момента на коленчатом валу, т.е. повышение КПД двигателя, так как его мощность определяется произведением момента на угловую скорость. При равенстве угловой скорости и росте момента будет возрастать мощность, а если постоянен расход энергоносителя, то возрастает КПД.

Поставленная задача достигается за счет того, что способ повышения КПД ДВС заключается в подаче энергоносителя в надпоршневую полость в виде двух вводов и его поджига, причем второй ввод энергоносителя осуществляют при движении поршня во время рабочего хода. Второй ввод энергоносителя осуществляют при угле между шатуном и кривошипом коленчатого вала 150-190 o , а номинальная масса энергоносителя обоих вводов остается постоянной для данного режима работы.

Пояснения к способу:
Желательно получить максимальное давление в надпоршневой полости, когда угол между шатуном и кривошипом составляет 90 o . В этом положении составляющая, касательная к траектории кривошипа, будет максимальной.

Разброс угла ввода энергоносителя объясняется следующими обстоятельствами: если способ используется в бензиновом ДВС, то ввод бензина может быть осуществлен, допустим, при угле 120 o , и 90 o будет осуществляться сгорание энергоносителя (примерно, так как линейная скорость велика); в «Дизеле» процесс сгорания будет происходить медленнее из-за самой структуры топлива, поэтому введение энергоносителя нужно производить раньше, допустим, при угле 150-190 o в зависимости от режима работы ДВС.

Введение топлива при движении поршня вниз не требует дополнительного поджига, так как температура будет выше точки вспышки энергоносителя.

Под энергоносителем понимается либо чистое топливо, либо смесь с газом (воздухом или обогащенным кислородом газом).

В начальный момент (топливо) энергоноситель, когда поршень находится в верхней точке («Дизель»), подается от 30 до 50% номинального значения топлива, а остальные 70-50% вводятся при благоприятном положении шатуна и коленчатого вала. Это зависит от режима работы и сейчас, когда используется вычислительная техника для определения оптимального момента поджига (для бензинового ДВС), не представит проблемы.

Качественно диаграммы обоих типов ДВС представлены на фиг. 1, 2: на фиг. 1 — бензиновой ДВС; на фиг. 2 — «Дизель». Снижение процесса подвода тепловой энергии связано с уменьшением массы энергоносителя.

Однако, если соответственно снизить и объем камеры сгорания, то форма подвода тепловой энергии меняться не будет.

Заштрихованный всплеск определяется горением введенной массы топлива. Площадь, заключенная между кривыми, возрастет, а она и определяет полезную работу. Возрастает и крутящий момент, т.е. произойдет возрастание КПД, что и является целью изобретения.

Возможен случай ввода энергоносителя только при движении поршня в указанных углах.

Что такое КПД двигателя? 3 фактора, влияющих на эффективность работы двигателя

Одним из наиболее значимых параметров, которые определяют эффективность различных механизмов машины, является КПД двигателя внутреннего сгорания. Что собой представляет данное понятие, от чего зависит коэффициент полезного действия в случае с автомобильным двигателем? Какой двигатель эффективнее: дизельный или бензиновый? Можно ли увеличить КПД двигателя?

Вопрос о том, насколько мощность соответствует КПД двигателя внутреннего сгорания, интересует практически каждого автолюбителя. В идеале чем выше КПД, тем эффективнее должна быть силовая система. Если же переходить от теории к практике, КПД в районе 95 % наблюдается только у электрических двигателей. Если рассматривать двигатели внутреннего сгорания вне зависимости от типа используемого топлива, то об идеальных цифрах можно только рассуждать.

Разумеется, эффективность современных двигателей существенно повысилась, если сравнивать с моделями, которые были выпущены всего 10 лет назад. Выпускаемые в начале 2000 годов 1,5-литровые моторы были рассчитаны на 70 лошадиных сил, к данному параметру претензий не было. Сегодня же при аналогичном объёме речь идет о 150 лошадиных силах и более.

Понятие «КПД двигателя»

Изначально рассмотрим, что такое КПД и как данное понятие рассматривать в аспекте автомобильного двигателя. Коэффициент полезного действия представлен показателем, с помощью которого отображается эффективность конкретного механизма относительно превращения полученной энергии в полезную работу. Показатель отображается в процентном соотношении.

В случае с двигателем внутреннего сгорания речь идет о преобразовании тепловой энергии, которая является продуктом сгорания топлива в цилиндрах мотора. КПД в данном случае отображает фактически реализуемую механическую работу, которая напрямую зависит от того, сколько поршень получит энергии от сгорания топлива. Также на данный параметр влияет итоговая мощность, которую установка отдаёт на коленчатом вале.

Возможно, вас заинтересует статья нашего эксперта, в которой подробно описывается и разбирается двигатель внешнего сгорания.

Что такое роторно-поршневой двигатель Ванкеля? Об особенностях этой разновидности мотора вы сможете узнать из материала нашего специалиста.

Также советуем прочитать статью нашего эксперта, в которой подробно рассматривается двигатель Ибадуллаева.

От чего зависит КПД

Ошибочно полагать, что КПД дизельного или бензинового двигателя может хоть как-то приблизиться к 100 %. На самом деле итоговый параметр во многом зависит от потерь:

  1. Потери при сгорании топлива стоит рассматривать первостепенно. Всё топливо, которое поступает в мотор, не может полностью сгорать, поэтому его часть просто улетает в выхлопную трубу. Потери в данном случае составляют около 25 %.
  2. Тепловые потери находятся на втором месте по значению. Получение тепла невозможно без энергии. Следовательно, энергия теряется при образовании тепла. Поскольку в случае с двигателем внутреннего сгорания тепло образуется с избытком, возникает необходимость в эффективной системе охлаждения. Однако тепло выделяется не только при сгорании топлива, но также во время работы самого мотора. Это происходит за счёт трения его деталей, поэтому часть энергии он теряет самостоятельно. На эту группу потерь приходится около 35 — 40 %.
  3. Последняя группа потерь имеет место в ходе обслуживания дополнительного оборудования. Расход энергии может идти на кондиционер, генератор, помпу системы охлаждения и прочие установки. Потери в данном случае составляют 10 %.
Читать еще:  Что происходит с двигателем когда пошел в разнос

Страшно представить, что у нас остаётся, поскольку в случае с бензиновыми агрегатами это в среднем 20 %, в иных не более 5 — 7 % дополнительно. Следовательно, заливая 10 литров топлива, которые уходят за 100 км пробега, всего 2,5 литра уходит на полезную работу, тогда как остальные 7 — 8 литров считаются пустыми потерями.

Коэффициент полезного действия: дизель или бензин?

Сравнивая коэффициент полезного действия бензинового и дизельного силового агрегата, о низкой эффективности первого стоит сказать сразу. КПД бензинового мотора составляет всего 25 — 30 %. Если речь идет о дизельном аналоге, показатель в данном случае составляет 40 %. О 50 % может идти речь при установленном турбокомпрессоре. КПД на уровне 55 % допустим при условии использования на дизельном ДВС современной системы топливного впрыска в сочетании с турбиной (читайте о том, как работает турбина).

Несмотря на то, что силовые установки конструктивно похожи, разница в производительности существенная, на что влияет принцип образования рабочей топливно-воздушной смеси и дальнейшая реализация воспламенения заряда. Также существенным фактором является вид используемого топлива. Оборотистость бензиновых силовых агрегатов более высока, если сравнивать с дизельными вариантами, но потери намного больше, поскольку полезная энергия расходуется на тепло. Как итог, эффективность преобразования энергии бензина в механическую работу намного ниже, а большая её часть просто рассеивается в атмосфере.

Крутящий момент и мощность

Если взять как основу одинаковый показатель рабочего объёма, мощность бензинового двигателя превосходит дизельный, но для её достижения обороты должны быть более высокими. Вместе с увеличением оборотов возрастают и потери, расход топлива повышается. Сам крутящий момент также не стоит упускать из виду, поскольку это сила, передающаяся на колёса от мотора, именно она и заставляет автомобиль двигаться. Таким образом, максимальный показатель крутящего момента бензиновыми двигателями достигается на более высоких оборотах.

Дизельный двигатель с аналогичными показателями способен на низких оборотах достичь максимума крутящего момента, а для реализации полезной работы расходуется меньше солярки. Следовательно, КПД дизельного двигателя выше, а топливо расходуется более экономно.

Эффективность бензина и солярки

Находящиеся в составе дизельного топлива углеводороды более тяжёлые, чем бензиновые. Во многом меньший коэффициент полезного действия бензинового мотора обусловлен особенностями сгорания бензинового топлива и его энергетической составляющей. Преобразование тепла в полезную механическую энергию в дизельном двигателе происходит более полноценно, следовательно, сжигание одинакового количества топлива за единицу времени позволяет дизелю выполнить больше работы.

Не стоит также упускать из виду создание необходимых для полного сгорания смеси условий и особенности впрыска. Подача топлива в дизельных моторах происходит отдельно от воздуха, поскольку впрыскивание осуществляется непосредственно в цилиндр на завершающем этапе такта сжатия, а не во впускной коллектор. Как итог, удаётся достичь более высокой температуры, а сгорание каждой порции топлива происходит максимально полноценно.

Повышение КПД двигателя

Топливная эффективность и КПД современных двигателей находятся на своём максимальном уровне, поскольку все усовершенствования, которые только могли иметь место в автомобильной инженерии, уже произошли. Тем не менее, производители стремятся повышать коэффициент полезного действия, но результат, который они получают, никак не сопоставим с огромными ресурсами, усилиями и временем, которое тратят для достижения цели. Итогом является увеличение КПД лишь на 2 — 3 %.

Частично именно эта ситуация стала причиной появления полноценной индустрии так называемого тюнинга двигателя в любой крупной стране. Речь идёт о многочисленных полукустарных мастерских, мелких фирмах и отдельных мастерах, которые доводят традиционные моторы массовых брендов для более высоких показателей, как в плане тяги, так и мощности или КПД. Это может быть форсирование, доработка, доводка и другие ухищрения, определяемые, как тюнинг.

Например, используемый впервые в 20-х годах турбонаддув воздуха, который поступает в двигатель, применяется и сейчас. Такое устройство было запатентовано ещё в 1905 году швейцарским инженером Альфредом Бюхи. В начале Второй мировой войны наблюдалось массовое внедрение систем прямого впрыска топлива в цилиндры поршневых моторов военной авиации. Следовательно, те передовые технические ухищрения, которые мы считаем современными, известны уже более 100 лет.

Выводы

В качестве итога стоит напомнить о том, что инженерам удалось шагнуть далеко вперёд от первых двигателей с КПД в районе 5 %. К тому же, изобретение идеального мотора с КПД под 100 % пока не представляется возможным, поэтому современные силовые установки находятся на пике своей эффективности. Единственный вариант для тех, кто принципиально нуждается в двигателе с 90-процентным КПД — это покупка электромобиля или машины с гибридным двигателем.

Что значит «коэффициент полезного действия». КПД двигателя внутреннего сгорания

Известно, что электрическая энергия передаётся на большие расстояния при напряжениях, превышающих уровень, используемый потребителями. Применение трансформаторов необходимо для того, чтобы преобразовывать напряжения до требуемых значений, увеличивать качество процесса передачи электроэнергии, а также уменьшать образующиеся потери.

Описание и принцип работы трансформатора

Трансформатор представляет собой аппарат, служащий для понижения или повышения напряжения, изменения числа фаз и, в редких случаях, для изменения частоты переменного тока.

Существуют следующие типы устройств:

  • силовые;
  • измерительные;
  • малой мощности;
  • импульсные;
  • пик-трансформаторы.

Статический аппарат состоит из следующих основных конструктивных элементов: двух (или более) обмоток и магнитопровода, который также называют сердечником. В трансформаторах напряжение подаётся на первичную обмотку, и с вторичной снимается уже в преобразованном виде. Обмотки связаны индуктивно, посредством магнитного поля в сердечнике.

Наряду с прочими преобразователями, трансформаторы обладают коэффициентом полезного действия (сокращённо — КПД ), с условным обозначением. Данный коэффициент представляет собой соотношение эффективно использованной энергии к потреблённой энергии из системы. Также его можно выразить в виде соотношением мощности, потребляемой нагрузкой к потребляемой устройством из сети. КПД относится к одному из первостепенных параметров, характеризующих эффективность производимой трансформатором работы.

Виды потерь в трансформаторе

Процесс передачи электроэнергии с первичной обмотки на вторичную сопровождается потерями. По этой причине происходит передача не всей энергии, но большей её части.

В конструкции устройства не предусмотрены вращающиеся части, в отличие от прочих электромашин. Это объясняет отсутствие в нём механических потерь.

Так, в аппарате присутствуют следующие потери:

  • электрические, в меди обмоток;
  • магнитные, в стали сердечника.

Энергетическая диаграмма и Закон сохранения энергии

Принцип действия устройства можно схематически в виде энергетической диаграммы, как это показано на изображении 1. Диаграмма отражает процесс передачи энергии, в ходе которого и образуются электрические и магнитные потери .

Согласно диаграмме, формула определения эффективной мощности P 2 имеет следующий вид:

Читать еще:  Двигатель в холодильнике работает а морозилка не морозит

P 2 =P 1 -ΔP эл1 -ΔP эл2 -ΔP м (1)

где, P 2 — полезная, а P 1 — потребляемая аппаратом мощность из сети.

Обозначив суммарные потери ΔP, закон сохранения энергии будет выглядеть как: P 1 =ΔP+P 2 (2)

Из этой формулы видно, что P 1 расходуется на P 2 , а также на суммарные потери ΔP. Отсюда, коэффициент полезного действия трансформатора получается в виде соотношения отдаваемой (полезной) мощности к потребляемой (соотношение P 2 и P 1).

Определение коэффициента полезного действия

С требуемой точностью для расчёта устройства, заранее выведенные значения коэффициента полезного действия можно взять из таблицы №1:

Как показано в таблице, величина параметра напрямую зависит от суммарной мощности.

Определение КПД методом непосредственных измерений

Формулу для вычисления КПД можно представить в нескольких вариантах:

Данное выражение наглядно отражает, что значение КПД трансформатора не больше единицы, а также не равно ей.

Следующее выражение определяет значение полезной мощности:

P 2 =U 2 *J 2 *cosφ 2 , (4)

где U 2 и J 2 — вторичные напряжение и ток нагрузки, а cosφ 2 — коэффициент мощности, значение которого зависит от типа нагрузки.

Поскольку P 1 =ΔP+P 2 , формула (3) приобретает следующий вид:

Электрические потери первичной обмотки ΔP эл1н зависят от квадрата силы протекающего в ней тока. Поэтому определять их следует таким образом:

(6)

(7)

где r mp — активное обмоточное сопротивление.

Так как работа электромагнитного аппарата не ограничивается номинальным режимом, определение степени загрузки по току требует использования коэффициента загрузки, который равен:

где J 2н — номинальный ток вторичной обмотки.

Отсюда, запишем выражения для определения тока вторичной обмотки:

Если подставить данное равенство в формулу (5), то получится следующее выражение:

Отметим, что определять значение КПД, с использованием последнего выражения, рекомендовано ГОСТом.

Резюмируя представленную информацию, отметим, что определить коэффициент полезного действия трансформатора можно по значениям мощности первичной и вторичной обмотки аппарата при номинальном режиме.

Определение КПД косвенным методом

Из-за больших величин КПД, которые могут быть равны 96% и более, а также неэкономичности метода непосредственных измерений, вычислить параметр с высокой степенью точности не представляется возможным. Поэтому его определение обычно проводится косвенным методом.

Обобщив все полученные выражения, получим следующую формулу для вычисления КПД:

η=(P 2 /P 1)+ΔP м +ΔP эл1 +ΔP эл2 , (11)

Подводя итог, следует отметить, что высокий показатель КПД свидетельствует об эффективно производимой работе электромагнитного аппарата. Потери в обмотках и стали сердечника, согласно ГОСТу, определяют при опыте , либо короткого замыкания, а мероприятия, направленные на их снижение, помогут достичь максимально возможных величин коэффициента полезного действия, к чему и необходимо стремиться.

Ни одно выполняемое действие не проходит без потерь — они есть всегда. Полученный результат всегда меньше тех усилий, которые приходится затрачивать для его достижения. О том, насколько велики потери при выполнении работы, и свидетельствует коэффициент полезного действия (КПД).

Что же скрывается за этой аббревиатурой? По сути дела, это коэффициент эффективности механизма или показатель рационального использования энергии. Величина КПД не имеет каких-то единиц измерения, она выражается в процентах. Определяется этот коэффициент как отношение полезной работы устройства к затраченной на его функционирование. Для вычисления КПД формула расчета будет выглядеть таким образом:

КПД =100* (полезная выполненная работа/затраченная работа)

В различных устройствах для расчета такого соотношения используются разные значения. Для электрических двигателей КПД будет выглядеть как отношение совершаемой полезной работы к электрической энергии, полученной из сети. Для будет определяться как отношение полезной совершаемой работы к затраченному количеству теплоты.

Для определения КПД необходимо, чтобы все разные и работа выражались в одних единицах. Тогда возможно будет сравнивать любые объекты, например генераторы электроэнергии и биологические объекты, с точки зрения эффективности.

Как уже отмечалось, из-за неизбежных потерь при работе механизмов коэффициент полезного действия всегда меньше 1. Так, КПД тепловых станций достигает 90%, у двигателей внутреннего сгорания КПД меньше 30%, КПД электрического трансформатора составляет 98%. Понятие КПД может применяться как к механизму в целом, так и к его отдельным узлам. При общей оценке эффективности механизма в целом (его КПД) берется произведение КПД отдельных составных частей этого устройства.

Проблема эффективного использования топлива появилась не сегодня. При непрерывном росте стоимости энергоресурсов вопрос повышения КПД механизмов превращается из чисто теоретического в вопрос практический. Если КПД обычного автомобиля не превышает 30%, то 70% своих денег, расходуемых на заправку топливом авто, мы просто выбрасываем.

Рассмотрение эффективности работы ДВС (двигателя внутреннего сгорания) показывает, что потери происходят на всех этапах его работы. Так, только 75% поступающего топлива сгорает в цилиндрах мотора, а 25% выбрасывается в атмосферу. Из всего сгоревшего топлива только 30-35% выделившегося тепла расходуется на выполнение полезной работы, остальное тепло или теряется с выхлопными газами, или остается в системе охлаждения автомобиля. Из полученной мощности на полезную работу используется около 80%, остальная мощность тратится на преодоление сил трения и используется вспомогательными механизмами автомобиля.

Даже на таком простом примере анализ эффективности работы механизма позволяет определить направления, в которых должны проводиться работы для сокращения потерь. Так, одно из приоритетных направлений — обеспечение полного сгорания топлива. Достигается это дополнительным распылением топлива и повышением давления, поэтому так популярны становятся двигатели с непосредственным впрыском и турбонаддувом. Тепло, отводимое из двигателя, используется для подогрева топлива с целью лучшей его испаряемости, а механические потери уменьшаются за счет использования современных сортов

Здесь нами рассмотрено такое понятие, как описано, что он собой представляет и на что влияет. Рассмотрена на примере ДВС эффективность его работы и определены направления и пути повышения возможностей этого устройства, а, следовательно, и КПД.

«Физика — 10 класс»

Что такое термодинамическая система и какими параметрами характеризуется её состояние.
Сформулируйте первый и второй законы термодинамики.

Именно создание теории тепловых двигателей и привело к формулированию второго закона термодинамики.

Запасы внутренней энергии в земной коре и океанах можно считать практически неограниченными. Но для решения практических задач располагать запасами энергии ещё недостаточно. Необходимо так же уметь за счёт энергии приводить в движение станки на фабриках и заводах, средства транспорта, тракторы и другие машины, вращать роторы генераторов электрического тока и т. д. Человечеству нужны двигатели — устройства, способные совершать работу. Большая часть двигателей на Земле — это тепловые двигатели .

Тепловые двигатели — это устройства, превращающие внутреннюю энергию топлива в механическую работу.

Принцип действия тепловых двигателей.

Для того чтобы двигатель совершал работу, необходима разность давлений по обе стороны поршня двигателя или лопастей турбины. Во всех тепловых двигателях эта разность давлений достигается за счёт повышения температуры рабочего тела (газа) на сотни или тысячи градусов по сравнению с температурой окружающей среды. Такое повышение температуры происходит при сгорании топлива.

Одна из основных частей двигателя — сосуд, наполненный газом, с подвижным поршнем. Рабочим телом у всех тепловых двигателей является газ, который совершает работу при расширении. Обозначим начальную температуру рабочего тела (газа) через T 1 . Эту температуру в паровых турбинах или машинах приобретает пар в паровом котле. В двигателях внутреннего сгорания и газовых турбинах повышение температуры происходит при сгорании топлива внутри самого двигателя. Температуру Т 1 называют температурой нагревателя .

Роль холодильника.

По мере совершения работы газ теряет энергию и неизбежно охлаждается до некоторой температуры Т 2 , которая обычно несколько выше температуры окружающей среды. Её называют температурой холодильника . Холодильником является атмосфера или специальные устройства для охлаждения и конденсации отработанного пара — конденсаторы . В последнем случае температура холодильника может быть немного ниже температуры окружающего воздуха.

Читать еще:  В двигателе стучит на холодную пропадает на горячую

Таким образом, в двигателе рабочее тело при расширении не может отдать всю свою внутреннюю энергию на совершение работы. Часть тепла неизбежно передаётся холодильнику (атмосфере) вместе с отработанным паром или выхлопными газами двигателей внутреннего сгорания и газовых турбин.

Эта часть внутренней энергии топлива теряется. Тепловой двигатель совершает работу за счёт внутренней энергии рабочего тела. Причём в этом процессе происходит передача теплоты от более горячих тел (нагревателя) к более холодным (холодильнику). Принципиальная схема теплового двигателя изображена на рисунке 13.13.

Рабочее тело двигателя получает от нагревателя при сгорании топлива количество теплоты Q 1 , совершает работу А» и передаёт холодильнику количество теплоты Q 2

КПД двигателя- Отличия бензинового и дизельного двигателя

Известно, что эффективность работы автомобильного двигателя внутреннего сгорания находится в прямой зависимости от величины коэффициента полезного действия. КПД двигателя выражается в виде соотношения мощностей, передаваемых на коленвал и поршни. Современные ДВС отличаются наибольшей эффективность, в сравнении с устаревшими аналогами. Например, мотор объемом 1,6 л., раньше развивал мощность не более 70 лошадиных сил, а теперь этот параметр часто достигает 150 л. с.

КПД парового двигателя

Для приведения в действие силового агрегата необходимо преобразовать тепловую энергию, появляющуюся при сжигании топливовоздушной смеси, в механическую. Раньше применялись паровые двигатели, в которых сгорало твердое топливо (уголь, дрова), поршни приходили в движение под воздействием расширяющегося пара. Размеры таких силовых установок были в несколько раз больше по габаритам, чем современные двигатели, работающие на топливе другого вида.

В паровых машинах поршневого типа КПД не превышает значения 10%. В настоящее время такие устройства почти не применяются, т. к. считается, что не существует кардинальных способов увеличить их коэффициент полезного действия.

С целью увеличения данного показателя, применяют источники тепла, обладающие наименьшей стоимостью. Например, на больших ТЭЦ используется атомная энергия. Вдобавок, применяются современные технологии, при которых отработанное тепло не уходит бесполезно в атмосферу, а используется для отопительных систем в многоквартирных домах. Потери здесь составляют не больше 10 процентов. Современные паровые турбины обладают коэффициентом КПД, равным 50 – 60%.

Интересно: В развитых странах Европы (Швейцарии, Австрии) большой популярностью пользуются паровозы. Их используют в качестве туристического транспорта для перевозки пассажиров по горным дорогам. Благодаря многочисленным усовершенствованиям, экономические показатели паровозов часто соперничают как с электровозами, так и тепловозами.

Чем отличаются КПД бензинового и дизельного двигателя

В отличие от паровых механизмов, топливом для двигателей внутреннего сгорания служит бензин или солярка. Двигатели внутреннего сгорания бензиновый и дизельный имеют схожие конструкции. Однако образование топливовоздушных смесей у них происходит по-разному.

В карбюраторном агрегате элементы поршневой группы функционируют при сверхвысоких температурах. Соответственно, они нуждаются в более качественном охлаждении. При этом наблюдается большой расход тепловой энергии. Вследствие неэффективного рассеивания тепла в окружающей среде, понижается коэффициент полезного действия бензинового силового агрегата.

  • КПД бензинового двигателя равняется 25-30 %;
  • дизельного – 40 %;
  • с установкой турбонаддува достигает 50 процентов соответственно.

Роторно-поршневые тепловые двигатели обладают высоким КПД, его значение превышает 40%. Это намного выше бензиновых аналогов, но немного отстает от дизельных моторов.

Турбореактивные самолетные двигатели работают совершенно по другому принципу, который существенно отличается от автомобильных ДВС. Благодаря сравнительно высокому КПД, они пользуются большой популярностью в авиастроении. Чаще всего турбореактивные агрегаты устанавливаются на крупных лайнерах большой грузоподъемности.

Как написано в учебниках физики, чтобы найти КПД двигателя, нужно разделить значение выполненной работы на величину затраченной энергии. При расчете коэффициента полезного действия ДВС полезная работа делится на количество тепла, полученного при сгорании топлива.

Основные потери КПД в двигателях внутреннего сгорания происходят при:

  1. Неполном сгорании топлива в цилиндрах.
  2. Расходе тепла.
  3. Механических потерях.

При неполном сгорании эффективность снижается за счет выхода четвертой части объема топлива с отработавшими газами. Здесь потери КПД двигателя составляют почти 25%. Благодаря появлению инжекторов, работа топливных систем становится более эффективной, но не идеальной.

Часть тепловой энергии уходит на прогрев корпусных деталей двигателя, рабочих узлов, моторного масла, радиатора и пр. Тепло также уходит с выхлопными газами. На данном этапе потери КПД составляют не меньше 35 процентов.

Несмотря на смазывание трущихся поверхностей, энергия расходуется на преодоление сил трения. Это происходит при сопряжении таких элементов, как шатуны, цилиндры, поршни, маслосъемные, компрессионные кольца и т. д. При вырабатывании электричества генератор тоже отбирает немалую долю энергии двигателя. В результате механических потерь, КПД ДВС снижается еще на 20%.

КПД двигателя рассчитывается по специальным формулам, в которых участвуют показатели работы, энергии и потерь.

Интересно: Существуют некоторые методы повышения КПД бензиновых двигателей внутреннего сгорания:

  1. Цилиндры оснащаются двумя впускными, а также двумя выпускными клапанами, вместо привычных конструкций в одном экземпляре.
  2. Свечи зажигания комплектуются отдельными катушками зажигания.
  3. Вместо обыкновенного тросика управления дроссельной заслонкой, используется электрический привод.

От чего зависит КПД дизельного двигателя

Если сравнивать эффективность бензинового и дизельного моторов, выяснится, что второй обладает лучшими показателями:

  • замечено, что, бензиновые двигатели преобразуют только одну четвертую часть использованной энергии в механическую работу;
  • в то время, как дизельные – 40% соответственно;
  • при установке турбонаддува в дизеле, КПД газотурбинного двигателя возрастает до 50 и более процентов.

Конструкция и принцип работы дизелей способствуют наибольшей эффективности в сравнении с карбюраторными двигателями. Причины лучшего КПД дизельного двигателя:

  1. Более высокий показатель степени сжатия.
  2. Воспламенение топлива происходит по другому принципу.
  3. Корпусные детали нагреваются меньше.
  4. Благодаря меньшему количеству клапанов, снижены расходы энергии на преодоление сил трения.
  5. В конструкции дизеля отсутствуют привычные свечи, катушки зажигания, на которые требуется дополнительная энергия от электрогенератора.
  6. Коленчатый вал дизеля раскручивается с меньшими оборотами.

В сравнении с дизелями, электрические двигатели считаются более эффективными. Двигатель с самым большим КПД – это электрический. При создании более долговечных аккумуляторных батарей, которым не страшны морозы, автомобильная промышленность постепенно перейдет на выпуск электромобилей в больших количествах.

КПД реактивного двигателя

Воздушно-реактивный тепловой мотор работает на химической энергии топливного состава. Его мощность расходуется на создание кинетической энергии ракеты и преодоление атмосферного сопротивления. Коэффициент полезного действия таких агрегатов минимальный, по своему значению он является самым маленьким, его значение не превышает даже 1%. Здесь более корректно обсуждать КПД не двигателя, а ракетного топлива, а также, насколько эффективно оно используется.

Резюме

При производстве современных двигателей внутреннего сгорания заводы-изготовители вкладывают большие средства в погоне за повышением КПД своей продукции хотя бы на несколько процентов. С этой целью, инженеры усовершенствуют и усложняют конструкции моторов, используют новые материалы для изготовления отдельных элементов.

Иногда случается, что финансовые затраты разработчиков нецелесообразны, в сравнении с полученным результатом в 2 – 3%. Поэтому бывает выгоднее подвергать стандартные двигатели различным форсированиям, доводкам, доработкам при помощи тюнинговых усовершенствований в небольших ремонтных мастерских. В результате чего увеличивается мощность и прочие тяговые характеристики силовых агрегатов.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector