Autoservice-mekona.ru

Автомобильный журнал
77 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что такое коэффициент мощности и кпд асинхронного двигателя

Курсовые и контрольные расчеты по электротехнике и радиотехнике

Коэффициент полезного действия (КПД) асинхронного двигателя показывает, какую часть составляет полезная мощность на валу двигателя от мощности, потребляемой двигателем из сети.

где Р1 – активная мощность, потребляемая двигателем из сети; Р2 – активная полезная мощность на валу двигателя, которая отдается производственному механизму.

Активная мощность Р1 определяет среднюю мощность необратимого преобразования в двигателе электрической энергии, получаемой из трехфазной сети, в механическую, тепловую и другие виды энергии.

Суммарные потери мощности в двигателе при преобразовании электрической энергии в полезную механическую

Рис. 72. Схема связей между частями машинного устройства

и диаграмма мощностей асинхронного двигателя

На диаграмме (рис. 72) показаны потери мощности в двигателе:

∆РЭ1, ∆РЭ2 – электрические потери, вызванные нагревом проводов обмоток статора и ротора; эти потери переменные, так как их величина зависит от нагрузки на валу двигателя и пропорциональна квадрату тока обмоток статора и ротора:

ΔРЭ1≈7,5%∙Р1; ΔРЭ2≈4,5%∙Р1; (172)

∆РС1, ∆РС2 – потери в стали машины, т.е. потери, обусловленные перемагничиванием сердечников статора и ротора, причем потери ∆РС2 в сердечнике ротора очень малы и практически не учитываются; потери в сердечнике статора

∆РМЕХ – механические потери, обусловленные трением ротора в подшипниках, и вентиляционные потери:

Наибольшее значение КПД достигает при номинальной нагрузке (рис. 73).

Рис. 73. Зависимость коэффициента полезного

действия от нагрузки на валу

КПД современных трехфазных асинхронных двигателей в номинальном режиме составляет 80–95%.

Коэффициент мощности асинхронного двигателя

Кроме необратимого процесса расхода энергии, учитываемого величиной активной мощности Р1, в асинхронном двигателе происходит обратимый процесс периодического изменения запаса энергии магнитного поля.

Коэффициент мощности асинхронного двигателя

зависит от нагрузки на валу двигателя.

В режиме холостого хода энергия расходуется в основном только на покрытие небольших потерь мощности в статоре и незначительных механических потерь. Энергия, запасенная во вращающемся магнитном поле, практически не зависит от расхода энергии на совершение полезной механической работы и нагрев двигателя, т.е. реактивная мощность не зависит от нагрузки на валу. Таким образом, в режиме холостого хода двигателя активная мощность мала, а реактивная велика, поэтому

С увеличением нагрузки на валу двигателя активная мощность растет, а реактивная остается постоянной. Следовательно, коэффициент мощности увеличивается. При номинальной нагрузке

Однако при дальнейшем увеличении тормозного момента на валу происходит существенный рост токов в обмотках статора и ротора, что приводит к возрастанию реактивной мощности и, как следствие, к снижению коэффициента мощности (рис. 74).

Коэффициент мощности

Коэффицие́нт мо́щности — безразмерная физическая величина, характеризующая потребителя переменного электрического тока с точки зрения наличия в нагрузке реактивной составляющей и мощности искажения (собирательное название — неактивная мощность). Следует отличать понятие «коэффициент мощности» от понятия «косинус фи», который равен косинусу сдвига фазы переменного тока, протекающего через нагрузку, относительно приложенного к ней напряжения. Второе понятие используют в случае синусоидальных тока и напряжения, и только в этом случае оба понятия эквивалентны.

Содержание

  • 1 Определение и физический смысл
  • 2 Прикладной смысл
  • 3 Математические расчёты
  • 4 Типовые оценки качества электропотребления
    • 4.1 Несинусоидальность
  • 5 Коррекция коэффициента мощности
    • 5.1 Разновидности коррекции коэффициента мощности
  • 6 Ссылки

Определение и физический смысл [ править | править код ]

Коэффициент мощности равен отношению потребляемой электроприёмником активной мощности к полной мощности. Активная мощность расходуется на совершение работы. В случае синусоидальных тока и напряжения полная мощность представляет собой геометрическую сумму активной и реактивной мощностей. Иными словами, она равна корню квадратному из суммы квадратов активной и реактивной мощностей. В общем случае полную мощность можно определить как произведение действующих (среднеквадратических) значений тока и напряжения в цепи. В качестве единицы измерения полной мощности принято использовать вольт-ампер (В∙А) вместо ватта (Вт).

В электроэнергетике для коэффициента мощности приняты обозначения cos ⁡ φ varphi > (где φ — сдвиг фаз между силой тока и напряжением) либо λ . Когда для обозначения коэффициента мощности используется λ , его величину обычно выражают в процентах.

Согласно неравенству Коши—Буняковского, активная мощность, равная среднему значению произведения тока и напряжения, всегда не превышает произведение соответствующих среднеквадратических значений. Поэтому коэффициент мощности принимает значения от нуля до единицы (или от 0 до 100 %).

Коэффициент мощности математически можно интерпретировать как косинус угла между векторами тока и напряжения (в общем случае бесконечномерных). Поэтому в случае синусоидальных напряжения и тока величина коэффициента мощности совпадает с косинусом угла, на который отстают соответствующие фазы.

В случае синусоидального напряжения, но несинусоидального тока, если нагрузка не имеет реактивной составляющей, коэффициент мощности равен доле мощности первой гармоники тока в полной мощности, потребляемой нагрузкой.

При наличии реактивной составляющей в нагрузке, кроме значения коэффициента мощности, иногда также указывают характер нагрузки: активно-ёмкостный или активно-индуктивный. В этом случае коэффициент мощности соответственно называют опережающим или отстающим.

Прикладной смысл [ править | править код ]

Можно показать, что если к источнику синусоидального напряжения (например, розетка

230 В, 50 Гц) подключить нагрузку, в которой ток опережает или отстаёт по фазе на некоторый угол от напряжения, то на внутреннем активном сопротивлении источника выделяется повышенная мощность. На практике это означает, что при работе на нагрузку с реактивной составляющей от электростанции требуется больше отвода тепла, чем при работе на активную нагрузку; избыток передаваемой энергии выделяется в виде тепла в проводах, и в масштабах, например, предприятия потери могут быть довольно значительными.

Читать еще:  Хендай старекс с бензиновым двигателем технические характеристики

Не следует путать коэффициент мощности и коэффициент полезного действия (КПД) нагрузки. Коэффициент мощности практически не влияет на энергопотребление самого устройства, включённого в сеть, но влияет на потери энергии в идущих к нему проводах, а также в местах выработки или преобразования энергии (например, на подстанциях). То есть счётчик электроэнергии в квартире практически не будет реагировать на коэффициент мощности устройств, поскольку оплате подлежит лишь электроэнергия, совершающая работу (активная составляющая нагрузки). В то же время от КПД непосредственно зависит потребляемая электроприбором активная мощность. Например, компактная люминесцентная («энергосберегающая») лампа потребляет примерно в 1,5 раза больше энергии, чем аналогичная по яркости светодиодная лампа. Это связано с более высоким КПД последней. Однако независимо от этого каждая из этих ламп может иметь как низкий, так и высокий коэффициент мощности, который определяется используемыми схемотехническими решениями.

Математические расчёты [ править | править код ]

Коэффициент мощности необходимо учитывать при проектировании электросетей. Низкий коэффициент мощности ведёт к увеличению доли потерь электроэнергии в электрической сети в общих потерях. Если его снижение вызвано нелинейным, и особенно импульсным характером нагрузки, это дополнительно приводит к искажениям формы напряжения в сети. Чтобы увеличить коэффициент мощности, используют компенсирующие устройства. Неверно рассчитанный коэффициент мощности может привести к избыточному потреблению электроэнергии и снижению КПД электрооборудования, питающегося от данной сети.

Для расчётов в случае гармонических переменных U (напряжение) и I (сила тока) используются следующие математические формулы:

  1. χ = P S >>
  2. P = U × I × cos ⁡ φ
  3. Q = U × I × sin ⁡ φ
  4. S = ∑ k = 1 ∞ ( U ) × I = P 2 + Q 2 + T 2 ^displaystyle (U)times I=+Q^<2>+T^<2>>>>

Здесь P — активная мощность, S — полная мощность, Q — реактивная мощность, T — мощность искажения.

Типовые оценки качества электропотребления [ править | править код ]

Значение
коэффициента
мощности
ВысокоеХорошееУдовлетворительноеНизкоеНеудовлетворительное
cos ⁡ φ varphi > 0,95…10,8…0,950,65…0,80,5…0,650…0,5
λ 95…100 %80…95 %65…80 %50…65 %0…50 %

При одной и той же активной мощности нагрузки мощность, бесполезно рассеиваемая на проводах, обратно пропорциональна квадрату коэффициента мощности. Таким образом, чем меньше коэффициент мощности, тем ниже качество потребления электроэнергии. Для повышения качества электропотребления применяются различные способы коррекции коэффициента мощности, то есть его повышения до значения, близкого к единице.

Например, большинство старых светильников с люминесцентными лампами для зажигания и поддержания горения используют электромагнитные балласты (ЭмПРА), характеризующиеся низким значением коэффициента мощности, то есть неэффективным электропотреблением. Многие компактные люминесцентные («энергосберегающие») лампы, имеющие ЭПРА, тоже характеризуются низким коэффициентом мощности (0,5…0,65). Но аналогичные изделия известных производителей, как и большинство современных светильников, содержат схемы коррекции коэффициента мощности, и для них значение cos ⁡ φ varphi > близко к 1, то есть к идеальному значению.

Несинусоидальность [ править | править код ]

Низкое качество потребителей электроэнергии, связанное с наличием в нагрузке мощности искажения, то есть нелинейная нагрузка (особенно при импульсном её характере), приводит к искажению синусоидальной формы питающего напряжения. Несинусоидальность — вид нелинейных искажений напряжения в электрической сети, который связан с появлением в составе напряжения гармоник с частотами, многократно превышающими основную частоту сети. Высшие гармоники напряжения оказывают отрицательное влияние на работу системы электроснабжения, вызывая дополнительные активные потери в трансформаторах, электрических машинах и сетях; повышенную аварийность в кабельных сетях.

Источниками высших гармоник тока и напряжения являются электроприёмники с нелинейными нагрузками. Например, мощные выпрямители переменного тока, применяемые в металлургической промышленности и на железнодорожном транспорте, газоразрядные лампы, импульсные источники питания и др.

Коррекция коэффициента мощности [ править | править код ]

Коррекция коэффициента мощности (англ. power factor correction , PFC) — процесс приведения потребления конечного устройства, обладающего низким коэффициентом мощности при питании от силовой сети переменного тока, к состоянию, при котором коэффициент мощности соответствует принятым стандартам.

К ухудшению коэффициента мощности (изменению потребляемого тока непропорционально приложенному напряжению) приводят нерезистивные нагрузки: реактивная и нелинейная. Реактивные нагрузки корректируются внешними реактивностями, именно для них определена величина cos ⁡ φ . Коррекция нелинейной нагрузки технически реализуется в виде той или иной дополнительной схемы на входе устройства.

Данная процедура необходима для равномерного использования мощности фазы и исключения перегрузки нейтрального провода трёхфазной сети. Так, она обязательна для импульсных источников питания мощностью в 100 и более ватт [ источник не указан 3801 день ] . Компенсация обеспечивает отсутствие всплесков тока потребления на вершине синусоиды питающего напряжения и равномерную нагрузку на силовую линию.

Коэффициент полезного действия и коэффициент мощности АТД

Коэффициент полезного действия АТД. При расчете КПД необходимо учесть потери мощности:

где 2 Я,у — активная мощность АТД с учетом всех гармоник напряже-у=1.5.7

ння; ДЯм — потери в обмотках статора и ротора от основной гармоники тока; ДЯС — потерн в стали статора от основной гармоники потока; ДЯд — добавочные потери от пространственных гармоник поля; 2ДЯ „- потери в обмотках

статора и ротора от высших гармоник токов.

Так как средний момент от высших гармоник весьма мал, можно считать, что высшие гармоники в активной мощности имеют только составляющую, компенсирующую добавочные потери; тогда КПД асинхронного двигателя

где Р-1 = совфх — активная мощность АТД с учетом первых гармоник

напряжения и тока.

Коэффициент мощности АТД. Высшие гармоники фазного напряжения создают высокочастотные магнитные поля, являющиеся полями рассеяния, снижающие коэффициент мощности. С учетом высших гармоник коэффициент мощности АТД

В числителе формулы (7.13) дано выражение активной мощности с учетом всех гармоник тока и напряжения с 1-й по 17-ю, в знаменателе- произведение действующих значений фазного напряжения и фазного тока от всех гармоник, т. е. полная мощность с учетом всех гармоник.

Коэффициент мощности можно также представить упрощенно в виде

где соод — коэффициент мощности для первых гармоник напряжения н тока; Ки — коэффициент искажения напряжения; /С|-коэффициент искажения тока.

Располагая формой кривых фазных напряжений и токов, можно с помощью электронных анализаторов гармоник разложить их в ряд и выяснить при этом не только амплитуды высших гармоник, но и фазовые смещения токов /у относительно напряжения иу, т. е. определить cos фу для гармоник. После этого по формуле (7.13) достаточно точно определяется коэффициент мощности Кн.

Если амплитуды или действующие значения гармоник тока и напряжения определены, то коэффициент Км можно вычислить по предварительно вычисленным значениям

Как указывалось в параграфе 7.1, наибольшее искажение форм кривых тока имеет место при повышенном напряжении и малой нагрузке на валу, т. е. при небольших значениях тока первой гармоники. В этом случае разница между значениями Ки и cos

Электроподвижной состав с асинхронными тяговыми двигателями

  • ОТ АВТОРОВ
  • ВВЕДЕНИЕ
  • Предпосылки для яиедреммя и преимущества АТД
  • Режимы нагрузок АТД
  • Расчетные значения мощностей и вращающих моментов АТД
  • Требования эксплуатации к характеристикам АТД
  • Формирование вращающейся МДС статорной обмотки асинхронного двигателя, питающегося от преобразователя частоты
  • Требования к параметрам АТД
  • Режимы работы ЭПС
  • Электротягопю м тяговые характеристики АТД при частотном управлении и их расчет
  • Диапазон регулирования частоты и напряжения в режиме тяги
  • Критическое скольжение асинхронного тягового двигателя в начальной стадии пуска с учетом насыщения магнитной цепи
  • Основные требования к преобразователям частоты
  • Структурные схемы преобразователей частоты
  • Основные требования и »цементной базе преобразователей частоты
  • Входные преобразователи ЭПС постоянного тока
  • Входные преобразователи ЭПС переменного тока
  • Способы повышения энергетических показателей ЭПС с АТД
  • Основные соотношения для асинхронного двигателя при питании от автономного инвертора напряжения
  • Расчет элементов автономного инвертора напряжения и фильтра
  • Узлы принудительной коммутации автономного инвертора напряжения
  • Основные соотношения для асинхронного двигателя при питании от автономного инвертора тока
  • Расчет элементов автономного инвертора тока
  • Автономные инверторы тока для электроподвижного состава
  • Форма фазных токов и напряжений при питании асинхронного тягового двигателя от преобразователя частоты
  • Основные соотношения менаду параметрами режима и параметрами конструкции АТД
  • Составляющие алектромагиитиого момента в асинхронном тяговом двигателе
  • Добавочные потерн от временных гармоник напряжения н тока
  • Коэффициент полезного действия и коэффициент мощности АТД
  • Статическая устойчивость асинхронных тяговых двигателей
  • Особенности конструкции асинхронных тяговых двигателей
  • Особенности проектирования АТД
  • Особенности электромагнитных процессов в силовых цепях
  • Влияние свойств источнике питания на характеристики АТД
  • Расчет электромеханических характеристик асинхронной машины в генераторном режиме работы
  • Тормозные характеристики асинхронной машины
  • Регулировочные характеристики асинхронного генератора
  • Расчет режимов реостатного, реостатно-рекуперативного и рекуперативного торможения
  • Устойчивость работы тяговой асинхронной машины в генераторном режиме
  • Перевод асинхронной машины в генераторный режим
  • Использование автономного инвертора напряжении с тиристорами в цепях обратного тока при реализации генераторного режима работы асинхронной машины
  • Принципы рационального управлении тяговыми асинхронными двигателями и структура системы управления
  • Система регулирования частоты
  • Система регулирования напряжения
  • Условия параллельной работы асинхронных тяговых двигателей
  • Параллельная работа автономных инверторов напряжения
  • Тяговые свойства ЭПС с асинхронными тяговыми двигателями
  • Электромагнитные процессы при аварийных режимах
  • Защита полупроводниковых преобразователей от перенапряжений и саерхтоков
  • Отечественный опыт создания алектровозов с асинхронными тяговыми двигателями
  • Зарубежный опыт создания ЭПС с асинхронными тяговыми двигателями
Электродинамический тормоз электровозов ЧС2 Т и ЧС200

Рассмотрены устройство и работа основного электронного оборудования, применяемого в электродинамическом (реостатном) тормозе системы «Шкода». Применительно к электродинамическому тормозу электровозов ЧС2 Т и его модификации на скоростном электровозе ЧС200

5.10. КПД и коэффициент мощности асинхронного двигателя

Коэффициент полезного действия электродвигателя

где p ∑ – суммарные потери мощности; P 1 – потребляемая асинхронным двигателем (его статорной обмоткой) активная электрическая мощность; P 2 – полезная механическая мощность (снимаемая с вала двигателя).

КПД современных асинхронных двигателей при номинальной нагрузке для машин мощностью свыше 100 кВт составляет 0,92 − 0,96, мощностью 1 − 100 кВт – 0,7 − 0,9, а микромашин – 0,4 − 0,6 (большие значения относятся к машинам большей мощности).

Так же, как в трансформаторе, потери мощности асинхронного двигателя следует разделить на потери постоянные и переменные (или потери холостого хода и короткого замыкания). Постоянные потери не зависят от нагрузки. Это потери магнитные, механические, электрические холостого хода.

Магнитные потери определяются аналогично магнитным потерям трансформатора с помощью формулы Штейнметца:

где p 1,0/50 – удельные потери в стали на единицу массы при частоте 50 Гц и индукции 1,0 Тл; B – индукция на участке магнитопровода; G c – масса

сердечника (магнитопровода) или его участка.

Частота перемагничивания в роторе f 2 = f 1 s в рабочем режиме двигателя существенно меньше частоты магнитной индукции в статоре; масса магнитопровода ротора также меньше аналогичной массы статора. Обычно в практических расчетах асинхронных двигателей общепромышленного применения пренебрегают магнитными потерями в роторе.

Механические потери p мх состоят из потерь в подшипниках p подш , потерь на трение щеток о кольца p тр.щ (только для фазного ротора), вентиля-

5. Асинхронные машины

ционных потерь p вент , включающих в себя потери на трение частей машины о воздух и потери в крыльчатке вентилятора, установленной на валу машины:

р мх = р подш + р вент + р тр.щ .

Механические потери зависят только от частоты вращения и составляют не более 2 % от номинальной мощности машины. Поскольку частота вращения асинхронного двигателя при изменении нагрузки от нуля до номинальной изменяется мало, то механические потери считают постоянными.

В отличие от трансформатора в асинхронном двигателе учитывают электрические потери холостого хода, поскольку ток холостого хода в нем существенно больше, чем в трансформаторе, и составляет от 20 до 50 % от номинального тока (причины такого значения I 0 объяснены в п. 5.1):

Таким образом, потери холостого хода

р 0 = р мх + р мг + р эл0 .

К потерям переменным (короткого замыкания) относят электрические потери в обмотках статора и ротора:

р эл 1 = m 1 r 1 I 1 2 ; р эл 2 = m 1 r 2 ′ ( I 2 ′ ) 2 .

К переменным потерям относят и добавочные потери, вызванные различными причинами: неравномерностью зазора, технологическими погрешностями, вытеснением тока в проводниках обмотки, пульсациями магнитного потока и т. д. Обычно эти потери рассчитывают как определенный процент от номинальной мощности по формуле (5.73).

Итак, переменные потери, как следует из формул (5.120), (5.73), зависят от второй степени тока или второй степени коэффициента нагрузки k нг = I / I н (отношения тока текущей нагрузки к номинальному его значению):

p к = p эл2 + p д = m 1 r к ( I 2 ′ ) 2 + ( I I н ) 2 p д = k нг 2 р кн ,

где p кн – потери короткого замыкания при номинальном токе.

Таким образом, суммарные потери мощности можно представить в следующем виде:

p Σ = p 0 + p к = p 0 + k нг 2 p кн .

5. Асинхронные машины

Рис. 5.23. Зависимость КПД двигателя и его потерь от коэффициента нагрузки

Формулу (5.115) запишем с учетом выражения (5.122):

Характер зависимости КПД от коэффициента нагрузки такой же, как

и у трансформатора. При увеличении нагрузки КПД возрастает за счет уве-

личения Р 2 , но одновременно быстрее, чем Р 2 , возрастают переменные потери р к , поэтому при некотором токе I кр рост КПД прекращается и в дальнейшем начинает уменьшаться (рис. 5.23). Если исследовать функцию

(5.123) на экстремум (взять производную dη/d k нг и приравнять ее к нулю), то получим условие максимума КПД: он наступает при равенстве переменных

и постоянных потерь р к = р 0 . При проектировании электрической машины стремятся так распределить потери мощности, чтобы указанное условие выполнялось при наиболее вероятной нагрузке машины, несколько мень-

шей номинальной. Во вращающихся электрических машинах средней и большой мощности это условие выполняется при нагрузках 60 − 80 % от номинальной (коэффициент нагрузки k нг = 0,6 − 0,8). На рис. 5.23 приведены зависимости изменения КПД и потерь мощности от коэффициента нагрузки.

Коэффициент мощности асинхронной машины определяют как отношение активного тока к полному току или активной потребляемой мощности к полной мощности по выражению

5. Асинхронные машины

Рис. 5.24. Характеристика

Рис. 5.25. Зависимости тока

роторной обмотки и cos ψ 2

Асинхронный двигатель, так же как и трансформатор, независимо от нагрузки потребляет из сети отстающий ток, поэтому его cos φ 1 всегда меньше единицы.

При холостом ходе асинхронного двигателя коэффициент мощности мал и составляет cos φ 0 = 0,08 − 0,15 (рис. 5.24). Это объясняется малой величиной активной составляющей тока, идущего на покрытие лишь достаточно небольших потерь активной мощности. В то же время реактивная составляющая тока холостого хода сравнительно велика, поскольку потребляется двигателем для создания основного магнитного потока, практически не зависящего от нагрузки. При увеличении нагрузки cos φ 1 сначала довольно быстро растет при увеличении момента на валу, затем рост его замедляется и достигает максимума при мощности, близкой к номинальной (рис. 5.24). Но при увеличении момента уменьшается частота вращения и растет скольжение. При этом увеличивается частота тока в роторе f 2 = f 1 s , его индуктивное сопротивление. Снижается и cos φ 1 , как правило, при нагрузках, выше номинальных.

Вследствие массового использования асинхронных двигателей для рационального электроснабжения предприятий следует так организовывать технологический процесс, чтобы асинхронные двигатели были загружены в соответствии сихноминальной мощностью инеработали нахолостомходу.

Величина коэффициента мощности для двигателей с короткозамкнутым ротором мощностью до 100 кВт достигает 0,7 − 0,9, а для двигателей свыше 100 кВт cos φ 1 = 0,9 − 0,95. В двигателях с фазным ротором cos φ 1 и КПД несколько ниже, что объясняется дополнительными потерями на трение щеток, худшим использованием объема ротора из-за наличия изоляции в его пазах и увеличением намагничивающего тока в результате уменьшения сечения зубцов ротора.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector