Autoservice-mekona.ru

Автомобильный журнал
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что такое двигатель постоянного тока с параллельным возбуждением

Расчет электрических цепей постоянного и переменного тока

Пример Двигатель постоянного тока с параллельным возбуждением (рисунок 25) работает в номинальном режиме, потребляет ток из сети Iном = 102 А при напряжении Uном = 220 В. Сопротивление обмотки возбуждения Rв = 32 Ом. ПротивоЭДС, которая индуцируется в обмотке якоря, Е = 214,9 В.

Определить: 1) ток в обмотке якоря Iя; 2) сопротивление обмотки якоря Rя.

Дано: Uном= 220 В, Iном = 102 А, Rв = 32Ом, Е = 214,9 В.

Определить: Iя, Rя.

Решение 1 Ток в обмотке якоря Iя можно определить по двум формулам:

откуда Iя = Iном — Iв или

Вторая формула для решения не подходит, так как не известно Rя. Схемы замещения пассивного четырехполюсника Ранее было установлено, что любой пассивный четырехполюсник однозначно характеризуется тремя независимыми коэффициентами.

Чтобы воспользоваться первой формулой, нужно предварительно определить ток в обмотке возбуждения Iв.

2 Зная значение Rв, вычислим ток в обмотке возбуждения:

Iв = U/Rв = 220/32=6,87 А,

Iя = Iном — Iв = 102 — 6,87 = 95,13 А.

3 По второй формуле для Iя определим сопротивление обмотки якоря Iя = (U — E)/Rя,

Rя = (U — E)/Iя =(220 — 214,19)/95,13 = 0,05 Ом.

Для закрепления знаний методики решения задач рекомендуется решить задачи.

Двигатель постоянного тока с параллельным возбуждением имеет следующие данные: сопротивление обмотки якоря Rя = 0,2 Ом; сопротивление обмотки возбуждения Rв = 40 Ом; КПД генератора η =0,95; ток возбуждения Iв = 5А, ток в нагрузке I= 95 А.

Определить: 1) электродвижущую силу генератора Е; 2) напряжение на зажимах генератора U; 3) ток в обмотке якоря Iя; 4) полезную мощность генератора Р2; 5) мощность первичного двигателя Р1, затрачиваемую на работу генератора.

Ответ: Е = 220 В; Iя = 100 А; Р2 = 19000 Вт, Р1 = 20000 Вт; U = 220 В.

Задача 8 Двигатель постоянного тока с параллельным возбуждением имеет следующие данные: 1) напряжение сети, питающей двигатель, U= 300 В; 2) ток в обмотке якоря Iя = 100 А; 3) сопротивление обмотки якоря Rя = 0,1 Ом, обмотки возбуждения Rв = 50 ; 4) коэффициент полезного действия двигателя η = 0,9.

Определить: 1) противоЭДС Е, наводимую в обмотку якоря при работе двигателя; 2) токи: нагрузки I и в обмотке возбуждения Iв; 3) мощности: полезную на валу двигателя Р2 и потребляемую из сети Р1.

Ответ: Е= 290 В; Iв = 6А; I = 6 А; I = 106 А; Р1 = 31800 Вт; Р2 = 28620 Вт.

5.8. Какая из схем позволяет осуществить реверсирование двигателя? Объясните почему?

5.9. Трехфазный асинхронный двигатель с короткозамкнутым ротором питается от сети с Uл=200 В, f=400 Гц. Номинальные данные двигателя: Рн=400 Вт, nн=7360 об/мин, cosjн=0,78, КПД=75%. Найдите номинальный ток двигателя, номинальное скольжение и номинальный момент на валу ротора.

Ответ: Iн=2 А, sн=0,08, Мн=0,52 Н×м.

5.10. Для асинхронного двигателя с короткозамкнутым ротором постройте механическую характеристику, если: Uн=380 В, Iн=146 А, nн=735 об/мин, cosjн=0,85, КПД=92,1%, Мmax/Мн=2,5.

5.11. Асинхронный двигатель с короткозамкнутым ротором имеет следующие данные: Рн=4,5 кВт, nн=1440 об/мин, Мmax/Мн=2,2, Мп/Мн=1,9. Найдите скольжение в момент пуска, пусковой и максимальный моменты. Как изменятся моменты при уменьшении напряжения сети на 5%.

Ответ: sн=1, Мп=56,7 Н×м, Мmax=65,7 Н×м.

Генератор постоянного тока с параллельным возбуждением, имеющий сопротивление обмотки якоря Rя = 0,1 Ом и сопротивление обмотки возбуждения Rв = 60 Ом, нагружен внешним сопротивлением R= 4 Ом. Напряжение на зажимах машины U = 220 В.

Структурная схема выпрямителя состоит из трех основных частей: трансформатора, вентилей (диодов) и фильтра. Кроме того, может применятся стабилизатор напряжения.

Пример Для питания постоянным током потребителя мощностью Pd = Вт при напряжении Ud = 100 B необходимо собрать схему однополупериодного выпрямления, подобрав диоды, технические данные которых приведены в таблице 2.

Пример Для питания постоянным током потребителя мощностью Рd = 800 Вт при напряжении Ud = 150 B необходимо собрать мостовую схему двухполупериодного выпрямления, подобрав диоды, технические данные которых приведены в таблице 2. Начертить схему выпрямителя.

Способы запуска электродвигателя постоянного тока

Хорошие тяговые характеристики электрических машин постоянного тока сделали их неотъемлемым элементом большинства устройств промышленной и бытовой механизации. Но вместе с тем возникает и существенная проблема значительных пусковых токов, в сравнении с асинхронными электродвигателями, работающих на переменном напряжении. Именно поэтому многие специалисты детально изучают способы запуска электродвигателя постоянного тока, прежде чем включить агрегат.

Прямой пуск

Из всех электродвигателей постоянного тока основная градация при выборе способа их запуска должна учитывать мощность устройства.

В целом выделяют три вида пуска:

  • малой мощности;
  • средней;
  • большой мощности.

Для прямого запуска подойдут только маломощные электродвигатели, которые потребляют до 1кВт электроэнергии в сети. При прямых запусках электродвигателя все напряжение сразу подается на рабочую обмотку. Это обуславливает возникновение максимального пускового тока из-за отсутствия естественной компенсации за счет ЭДС противодействия.

С физической точки зрения ситуация в обмотках ротора будет выглядеть следующим образом: в момент подачи напряжения сила тока в обмотках равна нулю, поэтому его значение будет определяться по формуле:

U – приложенная к выводам номинальное напряжение, Rобм – сопротивление катушки.

В этот момент величина токовой нагрузки электродвигателя постоянного тока является максимальной, он может отличаться от номинального значения в 1,5 – 2,5 раза. После этого протекание тока обуславливает генерацию ЭДС противодействия, которая компенсирует пусковую нагрузку до установки номинальной мощности, тогда ток станет:

Читать еще:  Двигатель ваз 2112 и 21124 в чем разница

В мощных устройствах сопротивление обмоток якоря может равняться 1 или 0,5 Ом, из-за чего ток при запуске электродвигателя может достигнуть 200 – 500 А, что в 10 – 50 раз будет превышать допустимые величины. Это, в свою очередь, может привести к термическому отпуску металла, деформации проводников, разрушению колец или щеток скользящего контакта. Поэтому двигатели постоянного тока средней и большой мощности должны вводиться в работу реостатным запуском или путем подачи заведомо пониженного напряжения, прямой пуск для них крайне опасен.

Пуск с помощью пускового реостата

В этом случае в цепь вводится переменное сопротивление, которое на начальном этапе обеспечивает снижение токовой нагрузки, пока вращение ротора не достигнет установленных оборотов. По мере стабилизации ампеража до стандартной величины в реостате уменьшается сопротивление от максимального значения до минимального.

Расчет электрической величины в этом случае будет производиться по формуле:

В лабораторных условиях уменьшение нагрузки может производиться вручную – посредством перемещения ползунка реостата. Однако в промышленности такой метод не получил широкого распространения, так как процесс не согласовывается с токовыми величинами. Поэтому применяется регулировка по току, по ЭДС или по времени, в первом случае задействуется измерение величины в обмотках возбуждения, во втором, на каждую ступень применяется выдержка времени.

Оба метода используются для запуска электродвигателей:

  • с последовательным;
  • с параллельным возбуждением;
  • с независимым возбуждением.

Запуск ДПТ с параллельным возбуждением

Такой запуск электродвигателя осуществляется посредством включения и обмотки возбуждения, и якорной к напряжению питания электросети, друг относительно друга они располагаются параллельно. То есть каждая из обмоток электродвигателя постоянного тока находятся под одинаковой разностью потенциалов. Этот метод запуска обеспечивает жесткий режим работы, используемый в станочном оборудовании. Токовая нагрузка во вспомогательной обмотке при запуске имеет сравнительно меньший ток, чем обмотки статора или ротора.

Для контроля пусковых характеристик сопротивления вводятся в обе цепи:

Рис 1. Запуск ДПТ с параллельным возбуждением

На начальном этапе вращения вала позиции реостата обеспечивают снижение нагрузки на электродвигатель, а затем их обратно выводят в положение нулевого сопротивления. При затяжных запусках выполняется автоматизация и комбинация нескольких ступеней пусковых реостатов или отдельных резисторов, пример такой схемы включения приведен на рисунке ниже:

Рис. 2. Ступенчатый пуск двигателя параллельного возбуждения

  • При подаче напряжения питания на электродвигатель ток, протекающий через рабочие обмотки и обмотку возбуждения, за счет магазина сопротивлений Rпуск1, Rпуск2, Rпуск3 нагрузка ограничивается до минимальной величины.
  • После достижения порогового значения минимума токовой величины происходит последовательное срабатывание реле K1, K2, K3.
  • В результате замыкания контактов реле K1.1 шунтируется первый резистор, рабочая характеристика в цепи питания электродвигателя скачкообразно повышается.
  • Но после снижения ниже установленного предела замыкаются контакты K2.2 и процесс повторяется снова, пока электрическая машина не достигнет номинальной частоты вращения.

Торможение электродвигателя постоянного тока может производиться в обратной последовательности за счет тех же резисторов.

Запуск ДПТ с последовательным возбуждением

На рисунке выше приведена принципиальная схема подключения электродвигателя с последовательным возбуждением. Ее отличительная особенность заключается в последовательном соединении катушки возбуждения Lвозбуждения и непосредственно мотора, переменное сопротивление Rякоря также вводится последовательно.

По цепи обеих катушек протекает одинаковая токовая величина, эта схема обладает хорошими параметрами запуска, поэтому ее часто используют в электрическом транспорте. Такой электродвигатель запрещено включать без усилия на валу, а регулирование частоты осуществляется в соответствии с нагрузкой.

Пуск ДПТ с независимым возбуждением

Подключение электродвигателя в цепь с независимым возбуждением производится путем ее запитки от отдельного источника.

Рис. 4. Запуск ДПТ с независимым возбуждением

На схеме приведен пример независимого подключения, здесь катушка Lвозбуждения и сопротивление в ее цепи Rвозбуждения получают питание отдельно от обмоток двигателя током независимого устройства. Для обмоток двигателя также включается регулировочный реостат Rякоря. При этом способе запуска машина постоянного тока не должна включаться без нагрузки или с минимальным усилием на валу, так как это приведет к нарастанию оборотов и последующей поломке.

Пуск путем изменения питающего напряжения

Одним из вариантов снижения токовой нагрузки при запуске электродвигателя является уменьшение питающего номинала посредством генератора постоянного напряжения или управляемого выпрямителя.

С физической точки зрения установка реостата обеспечивает тот же эффект, но с увеличением мощности электродвигателя возрастает и постоянная токовая нагрузка, существенно повышаются потери на реостатах. Поэтому снижение постоянного напряжения выполняет отдельное устройство на базе микросхемы, пример которого приведен на рисунке ниже:

Рис. 5. Схема пуска с изменением питающего напряжения

Принцип и схема работы двигателя постоянного тока с параллельным возбуждением

Существует несколько возможных разновидностей построения эл моторов, работающих от источника постоянного напряжения. Принцип их действия одинаков, а отличия заключаются в особенностях подключения обмотки возбуждения (ОВ) и якоря (Я).

Свое название эл двигатель постоянного тока с параллельным возбуждением получил потому, что его обмотка Я и ОВ соединяются друг с другом именно таким образом. Электродвигатель такой разновидности обеспечивает нужные режимы, превосходя изделия последовательного и смешанного типов тогда, когда требуется практически постоянная скорость его функционирования.

Читать еще:  Чип тюнинг газель next двигатель cummins 2016 год

Построение двигателя и область его применения

Схема электродвигателя рассматриваемого типа изображена ниже.

  • общий ток, потребляемый эл мотором от источника, составляет I = IЯ + IВ, где IЯ, IВ – токи через якорь, обмотку возбуждения, соответственно,
  • одновременно IВ не зависит от IЯ, то есть не зависит от нагрузки.

Устройство применяется тогда, когда пуск не требует обеспечения высокого момента, то есть когда режимы эксплуатации приводных механизмов не предполагают создание больших стартовых нагрузок. Это типично для станков и вентиляторов.

Для практики ценны такие полезные тяговые параметры подобных эл механизмов как

  • устойчивость работы при колебаниях нагрузки,
  • высокая экономичность из-за того, что IЯ не протекает через ОВ.

Пуск при недостаточном моменте обеспечивается переходом на схему смешанного типа.

Поведение электромотора при изменении нагрузок

Механическая характеристика показывает устойчивость работы электромотора в широком диапазоне изменения нагрузок, описывая зависимость момента, создаваемого эл двигателем, от скорости функционирования вала.

Тяговые характеристики механизма рассматриваемого типа позволяют сохранить величину момента при значительных изменения количества оборотов. Обычно тяговые параметры агрегата должен обеспечивать уменьшение этого параметра не более чем на 5 %. Несложное исследование демонстрирует: тормозные параметры из-за обратимости процессов оказываются аналогичными. Эти положения распространяются также на случай применения смешанного возбуждения.

Говоря иными словами, для такого эл мотора характерна жесткая характеристика. Такой характер работы считается важным преимуществом агрегата рассматриваемого типа.

Разновидности подходов к регулированию частоты вращения

Принцип действия параллельного включения обмоток обеспечивает плавный пуск в сочетании с большим диапазоном изменения оборотов в процессе работы с помощью реостатов. Они же обеспечивают нормальный пуск двигателя ограничением тока.

Для агрегатов параллельного типа используются способы управления скоростью функционирования изменением:

  • магнитного потока главных полюсов,
  • сопротивления цепи якоря,
  • подаваемого на него напряжения.

Объектом воздействия являются обмотка возбуждения, обмотка якоря, его рабочее напряжение.

Изменение магнитного потока осуществляется с помощью последовательного реостата RР. При увеличении его сопротивления ОВ пропускает меньший ток, что сопровождается уменьшением магнитного потока. Внешним проявлением такого действия становится наращивание оборотов Я на холостом ходу. Исследование показывает, что происходит увеличение угла наклона характеристики.

Второй принцип основан на включении в цепь питания якоря дополнительного последовательного регулировочного реостата. При увеличении его сопротивления скорость вращения Я уменьшается, тогда как его естественная механическая характеристика приобретает больший наклон. Из-за последовательного включения с основной обмоткой реостата дополнительного сопротивления, на котором рассеивается значительная мощность, происходит заметное падение экономичности.

Третий принцип сопровождается определенным усложнением схемных решений и требует применения отдельного регулируемого источника питания с сохранением возможности раздельного регулирования. В случае его применения в реальных условиях возможно только уменьшение частоты вращения вала.

Двигатель с независимым возбуждением

Двигатель постоянного тока независимого возбуждения реализует третий подход к регулированию и интересен тем, что ОВ и М питаются от разных источников, схема его представлена ниже.

Обмотки простейшего электромотора параллельного независимого возбуждения

Для моторов в данном конструктивном исполнении Iв устанавливается неизменным, а меняется только напряжение, приложенное к М. Это сопровождается изменением числа оборотов на холостом ходу, но жесткость характеристики изменений не претерпевает.

Принцип работы такого агрегата за счет независимого функционирования двух источников оказывается более сложным. Однако, его применение дает такие важные для практики преимущества как

  • плавное экономичное управление скоростью функционирования с большой глубиной,
  • пуск мотора при пониженном напряжении без реостата.

В случае, если пуск происходит на нормальном напряжении, реостат ограничивает величину Iв.

Исследование показывает, что максимальное количество оборотов ограничено только сопротивлением М, а минимальное условиями отвода выделяемого тепла в процессе работы.

Характеристики в части энергопотребления и скорости срабатывания управляющей системы улучшаются в случае последовательного включения с М различных тиристорных регуляторов. Для установки числа оборотов вала и их стабилизации в процессе приведения в движение различных механизмов находят применение различные способы. Их общим характерным признаком является включение тиристорного регулятора в цепь частотной отрицательной обратной связи. Пуск такого агрегата требует реализации специальных процедур.

Заключение

Двигатель с параллельным возбуждением является очень гибким приводным механизмом и может использоваться в очень большом количестве областей там, где не требуются большие моменты при старте. Имеет несложные и надежные цепи регулирования скорости вращения, отличается простотой запуска.

6.2.5. Двигатель постоянного тока с параллельным возбуждением

Пуск двигателя. Внутреннее сопротивление якоря машины невелико. У дви­гателей средней и большой мощности оно имеет величину порядка десятых-сотых долей Ома. При прямом включении двигателя в сеть пусковой ток IЯ.П =(14) достигает (10-30)IН.

Поэтому прямой пуск двигателя недопустим. Такой боль­шой пусковой ток опасен для двигателя и сети, напряжение в сети может значи­тельно снизиться, кроме того, возникнет толчок момента, действующего на передачу и рабочий механизм.

Для ограничения силы пускового тока последовательно с обмоткой якоря включают пусковой реостат rП (рис.27). Тогда токIЯ.П = (15)

Сопротивление пускового реостата выби­рают таким образом, чтобы сила пускового тока не превышала кратковременно допустимого но­минального значения силы тока якоря (2-2,5) IЯ. По мере увеличения частоты вращения двигате­ля растет противодействующая ЭДС якоря, ко­торая направлена против подведенного напря­жения, и ток снижается, поэтому сопротивле­ние пускового реостата постепенно уменьшают до нуля. Пусковой реостат включается на 2-3 секун­ды и не рассчитан на длительное протекание тока. Двигатели мощностью до 1 кВт имеют сравни­тельно большое сопротивление якоря, поэтому их включают без пусковых реостатов.

Читать еще:  Чем отличие двигатель на ниве от ваз 2106

При номинальной частоте вращения двига­теля имеемIЯ= (16)

Для определения частоты вращения двига­теля подставим в формулу (16) значение ЭДС из формулы (6), получимIЯ=,откуда n = (17)

Уравнение (17) п = f(IЯ) носит название скоростной характеристики и указывает на то, что частота вращения двигателя прямо пропорциональна под­веденному напряжению и обратно пропорциональна магнитному потоку.

При пуске двигателя регулировочный реостат в цепи возбуждения полно­стью выводится, чтобы обеспечить максимальное значение силы тока в цепи возбуждения и магнитного потока статора. Из формулы (17) видно, что при большом пусковом токе в якоре уменьшается числитель, а при большом токе в цепи возбуждения увеличивается знаменатель, что обеспечивает плавный пуск двигателя при достаточном вращающем моменте якоря для преодоления меха­нического сопротивления.

На практике пользуются зависимостью п=f(М), называемой механичес­кой характеристикой. Подставим в уравнение (17) значение момента двигате­ля (10) М = СмФ IЯ, в результате чего получимп= (18)

Полученное уравнение является уравнением механической характеристи­ки, связывающим зависимость установившейся частоты вращения двигателя от момента при постоянном напряжении сети и сопротивлении цепи якоря.

Рис. 27. Схема двигателя постоянного тока с параллельным возбуждением

В двигателях параллельного и независимого возбуждения поток Ф прак­тически постоянный, поэтому механическая характеристика представляется уравнением прямой (рис. 28), слегка наклоненной к оси абсцисс. В выраже­нии (18) первое слагаемое уравнения носит название частоты идеального холостого хода и обозначается n , второе слагаемое — потери частоты вращения двигателя под нагрузкой n. Тогда уравнение механичес­кой характеристики двигателя можно записать так: п = п n. Изменение час­тоты вращения двигателя при номинальной нагрузке составляет (3-8) % п. Такая механическая характеристика считается жесткой.

Регулирование частоты вращения двигателя с параллельным воз­буждением. Рассмотрим способы регулирования частоты вращения двигателя при неизменном тормозном моменте на валу.

Из уравнения механической характеристики (18) видно, что изменение п возможно при регулировании напряжения питания U, потока возбуждения Ф и величины сопротивления цепи якоря rЯ , CЕ и СМ — конструктивные коэффициен­ты, изменить которые мы не можем.

Регулирование частоты вращения изме­нением приложенного напряжения не при­меняется, так как с изменением силы тока изменяется и магнитный поток машины, а при малых напряжениях можно размагни­тить машину.

А) Регулирование «на уменьшение по­тока» (полюсное регу­лирование)

Из формулы п = следует, чточастота вращения идеального холостого хода обратно пропорциональна потоку. Пока магнитная система машины не насыщена, поток можно считать пропорциональным силе тока возбуждения IВ. Следовательно, частоту вращения двигателя можно регулировать изменением силы тока возбуждения, для чего в цепь возбуждения вво­дится реостат (рис. 27). С увеличением сопротивления rВ уменьшается сила тока возбуждения IВ, вследствие чего уменьшается поток Ф. Уменьшение по­тока возбуждения ведет к увеличению частоты вращения идеального холосто­го хода п. Потери частоты вращения n будут обратно пропорциональны квад­рату магнитного потока.

Таким образом, изменением потока возбуждения можно регулировать ча­стоту вращения двигателя. На рис. 29 приведены искусственные механичес­кие характеристики. При значительном уменьшении силы тока возбуждения (особенно при обрыве цепи возбуждения) силы тока якоря и частота вращения ненагруженного двигателя сильно возрастают, что может привести к опасным механическим повреждениям. Это явление недопустимо, поэтому двигатель должен быть снабжен автоматической защитой, отключающей его от сети при предельном уменьшении потока (ниже ‘/3ФН).

Регулирование «на уменьшение по­тока», называемое еще полюсным регу­лированием, весьма распространено, так как оно экономично и удобно в связи с тем, что сила тока возбуждения мала и мощность потерь в реостате мала.

Б) Реостатное регулирование. При этом способе регулирования, при Ф=const, последовательно с якорем вклю­чается регулировочный реостат. Уравнение механической характеристики имеет вид: п= (19)

Анализ уравнения (19) показыва­ет, что при изменении rР изменяется толь­ко n, т. е. увеличивается наклон меха­нической характеристики (рис.30). Из­меняя rР, увеличивая его, можно получить семейство механических характеристик, более мягких, чем естественная механи­ческая характеристика с частотой враще­ния п1, п2 и п3. У всех этих характеристик общая точка п — частота вращения иде­ального холостого хода двигателя. Такое регулирование неэкономично, так как че­рез регулировочный реостат проходит весь ток якоря IЯ, а это обусловливает значи­тельные потери мощности ∆Р = rР I 2 .

Рис. 28. Механическая характеристика двигателя с параллельным возбуждением

Рис. 29.Искусственные механические характеристики двигателя

Реверсирование двигателей постоянного тока. Под реверсированием понимают изменение направления вращения якоря двигателя.

Если изменить направление магнитного потока или тока якоря, то знак, а значит, и направление вращения двигателя изменятся. Однако одновременное изменение направления потока и тока якоря к изменению знака вращающего момента не приводит. Практически реверсирование осуществляется переклю­чением выводов обмотки якоря или обмотки возбуждения.

Рис. 30. Механические характеристики реостатного регулирования

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector