Autoservice-mekona.ru

Автомобильный журнал
3 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что поступает через впускной клапан у дизельного двигателя

Перекрытие клапанов. Что это такое, как выставить?

У меня на сайте большое количество полезного материала касательно системы ГРМ двигателя, начиная от ремня или цепи ГРМ, заканчивая — зачем нужно регулировать клапана. Статьи действительно полезные почитайте. НО недавно мне задали такой вопрос – а что такое перекрытие клапанов? Как оно регулируется и можно ли самому как-то все это выставить? Как я считаю очень интересная тема. Как обычно будет текстовая версия + видео в конце (для тех, кто не хочет читать) …

СОДЕРЖАНИЕ СТАТЬИ

  • Что такое перекрытие клапанов?
  • Баланс фаз газораспределения
  • Цикл ОТТО – МИЛЛЕРА
  • А что же с нашими ВАЗ?
  • ВИДЕО ВЕРСИЯ

Про перекрытие клапанов я говорил много, хотя вот в этой статье и видео про фазорегуляторы. Да и по сути это понятие очень простое.

Что такое перекрытие клапанов?

Это процесс, когда оба клапана открыты, на очень короткий промежуток времени. Впускной открывается раньше, а выпускной закрывается позже. Обычно такое происходит, когда поршень находится в ВМТ (верхней мертвой точке).

В основном это делается для того чтобы цилиндры двигателя лучше наполнялись на средних и высоких оборотах (на низких этот эффект не так сильно выражен). Когда обороты высокие тогда и поток воздушно топливной смеси намного больше, его как-то нужно запихнуть в цилиндры, но и отводить отработанные газы нужно также быстрее.

Для этого и сделано перекрытие — когда отработанные газы выходят в выпускной коллектор (то есть выпускные клапана открыты), создается сильное разряжение в цилиндрах, ближе к верхней мертвой точке (ВМТ) начинает немного приоткрываться впускной клапан. Разряжение, которое есть в цилиндрах, начинает «засасывать» свежую воздушно-топливную смесь. Таким образом, наполнение происходит намного лучше, то есть воздушно-топливной смеси в двигатель поступает больше, что лучше сказывается на мощности.

Баланс фаз газораспределения

Сейчас многие могут сказать — ну круто, нужно дольше делать перекрытие клапанов. Почему короткий промежуток? Ведь продувка лучше, наполняемость больше, мощность растет.

Но не все так просто. Если взять рядовые автомобили, со старыми технологиями, где нет фазорегуляторов, то здесь делают усредненные значения – как для высоких, так и для низких оборотов.

Смотрите в чем смысл:

Если сделать большое перекрытие клапанов. То есть впускные клапана будут открываться намного больше и раньше, как собственно и выпускные. То на низких оборотах такой двигатель будет работать нестабильно или даже вообще будет глохнуть. НО почему? Да все просто — отработанные газы смогут выходить во впуск и там смешиваться с новой топливной смесью, обедняя ее, ведь большого потока нет! Таким образом работать мотор на низах будет хуже. Однако на высоких оборотах продувка будет действительно лучше.

Однако если у вас есть фазовращатели, либо один (обычно на впуске), либо два (впуск и выпуск). Тогда вы можете менять фазы исходя из ваших потребностей.

Простыми словами:

  • Когда обороты низкие. То перекрытие вообще нет, либо оно минимально, ибо нет потребности — переваривать большое количество воздушно-топливной смеси
  • Когда обороты средние или тем более высокие. Тогда «фазовращатели» могут менять угол, делая фазы больше, и перекрытие также больше. Тогда продувка и наполняемость будут лучше.

Как видите все очень просто.

Сейчас современные иномарки идут как минимум с одной фазокрутилкой (на впуске). Этот мотор при высоких оборотах получается мощнее и зачастую экономичнее.

Цикл ОТТО – МИЛЛЕРА

Сейчас мои внимательные читатели могут сказать – да фазовращатели, нужно только для того чтобы менять циклы ОТТО и МИЛЛЕРА (на высоких оборотах и на низких).

Однако не совсем это так. Действительно «ФАЗИКИ» регулируют различные циклы сейчас это нормально, почти на всех современных моторах. Когда на низких оборотах идет цикл МИЛЛЕРА, а на высоких цикл ОТТО (пройдите сверху по ссылке и почитайте статью, а также посмотрите видео – все станет понятно)

Но и для перекрытия клапанов «ВРАЩАТЕЛИ» это просто необходимая вещь, причем автоматическая, которая работает очень хорошо.

А что же с нашими ВАЗ?

Как я уже писал сверху, старые моторы (и ВАЗ тут не исключение), имели просто обычную звездочку, на которую одевалась либо цепь, либо ремень ГРМ. Сейчас речь не про новые, а именно про старые.

Как вы догадываетесь, у них были усредненные значения фаз (ну и соответственно перекрытия).

Заводским методом фазы практически никак не настраивались, я сейчас молчу о регулировки клапанов. Также здесь не будет затрагивать спортивные распределительные валы (это уже немного другая тема).

Однако наши умельцы, в гараж и различных тюнинг ателье, ставили так называемые «разрезные шестерни распредвалов». Что это такое? Это шестерня, которая стоит как бы из двух частей: Внутренней части – соединена с распределительным валом.

Внешней части — которая соединяется с цепью – ремнем ГРМ.

Друг с другом они стягиваются болтами, отверстия для этих болтов имеют небольшой ход. То есть эти части могут немного вращаться (на небольшой угол) относительно друг друга. Таким образом можно было изменять угол и методом подбора установить нужную мощность, расход и работу мотора.

НО это скорее исключение из правил, и сейчас современные моторы скажем, на ЛАДА ВЕСТА уже имеют фазовращатели (так что с правильным перекрытием клапанов нет проблем).

Сейчас смотрим видео версию

На этом заканчиваю, думаю, мои материалы были вам полезны. Подписывайтесь на канал, читайте наш АВТОСАЙТ

(7 голосов, средний: 3,29 из 5)

Похожие новости

Расточка блока цилиндров. Зачем нужно двигателю и можно ли сдела.

Крутить или не крутить двигатель до отсечки? Нужно ли это делать

Турбина дизельного двигателя. Масло, работа и ресурс

Добавить комментарий Отменить ответ

ТОП статей за месяц

Скоро праздники, а это значит — большая часть нашей страны будет употреблять алкоголь. Легкий: —…

Напряжение аккумулятора транспортного средства, как и его емкость – самые важные показатели этого автомобильного узла,…

Меня часто спрашивают о выхлопе автомобиля. Зачастую новичкам, да и водителем со стажем не нравится,…

Устройство автомобилей

Рабочие циклы двигателей

Рабочий цикл четырехтактного карбюраторного двигателя

Работа двигателя внутреннего сгорания может быть представлена в виде систематически повторяющихся процессов, которые принято называть рабочими циклами. Рабочим циклом двигателя называется ряд последовательных, периодических повторяющихся процессов в цилиндрах, в результате которых тепловая энергия топлива преобразуется в механическую работу. При этом каждый полный рабочий цикл может быть разделен на одинаковые (повторяющиеся) части – такты.

Часть рабочего цикла, совершаемого за время движения поршня от одной мертвой точки до другой, т. е. за один ход поршня, называется тактом . Двигатели, рабочий цикл которых совершается за четыре хода поршня (два оборота коленчатого вала), называются четырехтактными.
В головке блока цилиндров, над камерой сгорания (рис. 1) карбюраторного двигателя устанавливаются впускной 4 и выпускной 6 клапаны, управляемые газораспределительным механизмом, а также свеча зажигания 5.

Рабочий цикл карбюраторного четырехтактного двигателя состоит из последовательных тактов впуска, сжатия, расширения и выпуска.

Такт впуска

В результате вращения коленчатого вала при пуске двигателя (вручную или с помощью специального устройства — например, заводной рукоятки или электродвигателя — стартера) поршень совершает движение от верхней мертвой точки (ВМТ) к нижней мертвой точке (НМТ). При этом впускной клапан 4 открыт, а выпускной клапан 6 закрыт.
Так как объем цилиндра при движении поршня вниз (к НМТ) быстро увеличивается, давление над поршнем уменьшается до 0,07. 0,09 МПа, т. е. внутри цилиндра создается вакуум – избыточное разрежение.
Впускной клапан 3 сообщается со специальным устройством – карбюратором, который приготавливает горючую смесь из топлива и воздуха. Вследствие разности давлений в карбюраторе и цилиндре горючая смесь всасывается через открытый впускной клапан в цилиндр двигателя.

Если двигатель уже работает, то горючая смесь, попадая в цилиндр из карбюратора, смешивается с остаточными продуктами сгорания от предыдущего цикла, и образует рабочую смесь. Смешиваясь с остаточными продуктами сгорания и соприкасаясь с нагретыми деталями цилиндра, рабочая смесь нагревается до температуры 75. 125 ˚С.

Такт сжатия

При подходе поршня к НМТ впускной клапан закрывается. Далее поршень начинает перемещаться вверх (к ВМТ), сжимая смесь воздуха, топлива и остаточных продуктов сгорания, которые не были удалены из цилиндра при выпуске. При движении поршня от НМТ к ВМТ вследствие сокращения объема цилиндра при закрытых клапанах повышаются давление, при этом возрастает температура рабочей смеси (в соответствии с законом Гей-Люссака).
В конце такта сжатия давление внутри цилиндра повышается до 0,9…1,5 МПа, а температура смеси достигает 270-480 ˚С.
В этот момент к электродам свечи зажигания 5 подводится высокое напряжение, которые вызывает между ними искровой разряд, результате чего рабочая смесь воспламеняется и сгорает.
В процессе сгорания топлива выделяется большое количество теплоты, из-за чего температура газов (продуктов сгорания) повышается до 2200-2500 ˚С, и давление внутри цилиндра достигает 3,0…4,5 МПа. Газы начинают расширяться, перемещая поршень вниз, к НМТ.

Такт расширения (рабочий ход)

Под давлением расширяющихся газов поршень движется от ВМТ к НМТ (при этом оба клапана закрыты). В этот промежуток времени (такт) происходит преобразование тепловой энергии в полезную работу, поэтому ход поршня в такте расширения называют рабочим ходом.
При движении поршня к НМТ объем цилиндра увеличивается, вследствие чего давление уменьшается до 0,3…0,4 МПа, а температура газов снижается до 900…1200 ˚С.

Такт выпуска

При подходе поршня к НМТ открывается выпускной клапан 6, в результате чего продукты сгорания рабочей смеси вырываются наружу из цилиндра.
При дальнейшем вращении коленчатого вала поршень начинает перемещаться от НМТ к ВМТ. Выталкивая отработавшие газы через открытый выпускной клапан, выпускной канал 7 и выпускную трубу в окружающую среду. К концу такта выпуска давление в цилиндре составляет 0,11…0,12 МПа, а температура – 600…900 ˚С.

При подходе поршня к ВМТ выпускной клапан закрывается, впускной открывается и начинается такт впуска, дающий начало новому рабочему циклу.

Читать еще:  Двигатель внутреннего сгорания устройство и принцип работы реферат

Рабочий цикл четырехтактного дизеля

Рабочий цикл дизельного двигателя принципиально отличается от цикла карбюраторного двигателя тем, что рабочая смесь (смесь топлива, воздуха и остаточных продуктов сгорания) приготовляется внутри цилиндра, поскольку воздух подается в цилиндр отдельно, а топливо отдельно – через форсунку. В дизельном двигателе нет специального устройства для поджигания рабочей смеси – она самовозгорается в результате высокой степени сжатия.
Т. е. в дизеле, в отличие от карбюраторного двигателя, через впускной клапан подается не горючая смесь, а атмосферный воздух, а топливо впрыскивается через форсунку в конце такта сжатия. В цилиндре, как и в случае с карбюраторным двигателем, остаются продукты сгорания рабочей смеси, которые не удалось удалить продувкой.
Смесеобразование (перемешивание воздуха, топлива и остаточных продуктов сгорания) в дизеле протекает внутри цилиндра, что и обуславливает основные отличия череды тактов, составляющих рабочий цикл.

Высокая степень сжатия приводит к тому, что поступивший в цилиндр через впускной клапан воздух, смешивается с остаточными газами и раскаляется (в буквальном смысле этого слова) до высоких температур. И в это время в цилиндр впрыскивается топливо, которое вспыхивает и начинает гореть.

Рабочие процессы в дизельном двигателе протекают в следующей последовательности (рис. 2) :

Такт впуска

В период такта впуска поршень 2 движется от НМТ к ВМТ. При этом впускной клапан 5 открыт, выпускной клапан 6 закрыт. В цилиндре 7 из-за разности давлений в окружающей среде и в цилиндре в конце такта впуска возникает разрежение 0,08. 0,09 МПа, при этом температура внутри цилиндра не превышает 40…70 ˚С.

Такт сжатия

В процессе такта сжатия оба клапана закрыты. Поршень 2 движется от НМТ к ВМТ, сжимая смесь воздуха и отработавших газов. Давление в конце такта сжатия достигает 3…6 МПа, а температура – 450…650 ˚С (превышает температуру самовоспламенения топлива).

При подходе поршня к ВМТ, в цилиндр через форсунку 3 впрыскивается распыленное жидкое топливо. Топливо подается к форсунке (через трубку высокого давления) топливным насосом 1 высокого давления (ТНВД). Форсунка обеспечивает тонкое распыление топлива в сжатом воздухе. Распыленное топливо самовоспламеняется и сгорает. В результате сгорания температура в цилиндре достигает 1600…1900 ˚С, давление – 6…9 МПа.

Такт расширения (рабочий ход)
Такт выпуска

При подходе к нижней мертвой точке (НМТ) выпускной клапан 6 открывается и большая часть отработавших газов под воздействием высокого давления вырывается из цилиндра в атмосферу. Поршень начинает перемещение от НМТ к ВМТ и через открытый выпускной клапан выталкивает оставшиеся в цилиндре отработавшие газы в окружающую среду. К концу такта давление газов в цилиндре составляет 0,11…0,12 МПа, а температура – 600. 700 ˚С.
Далее рабочий цикл повторяется.

Таким образом, в четырехтактном двигателе только один такт – рабочий ход является полезным с точки зрения совершения полезной работы, остальные три вспомогательные, они осуществляются за счет кинетической энергии маховика, закрепленного на конце коленчатого вала.

Рабочий цикл двухтактного двигателя

В двухтактных ДВС рабочий цикл осуществляется за один оборот коленчатого вала.
Схема двухтактного дизеля представлена на рис. 3 .
Воздух насосом 3 нагнетается через впускное (продувочное) окно 4 в цилиндр. В нижней части цилиндра напротив впускного окна имеется выпускное окно 7. В головке 5 блока цилиндра установлены форсунки 6.

Первый такт (рис. 3, а) совершается при движении поршня от НМТ к ВМТ за счет кинетической энергии маховика двигателя. Оба окна открыты. Нагнетаемый через впускное окно 4 воздух вытесняет из цилиндра оставшиеся в нем отработавшие газы, которые выходят через выпускное окно 7. Таким образом происходит очистка цилиндра от отработавших газов (продувка) и заполнение его свежим зарядом.

Движущийся вверх поршень 8 сначала закрывает впускное окно, а затем выпускное окно. С этого момента начинается процесс сжатия, в конце которого через форсунку 6 впрыскивается топливо.
Таким образом, за первую половину оборота коленчатого вала совершаются процессы наполнения и сжатия, и начинается сгорание топлива.

Второй такт (рис. 3. б) происходит при движении поршня ВМТ к НМТ. В результате выделения теплоты при сгорании топлива повышается температура и давление внутри цилиндра. Поршень перемещается вниз, совершая полезную работу.
Как только поршень открывает выпускное окно, отработавшие газы под давлением начинают выходить в окружающую среду. К моменту открытия впускного окна давление внутри цилиндра снижается на столько, что возможна очистка цилиндра путем вытеснения отработавших газов свежим зарядом воздуха, подаваемым в цилиндр насосом 3.
Этот процесс называется продувкой цилиндра. При этом одновременно с вытеснением отработавших газов происходит наполнение цилиндра свежим зарядом. Далее все процессы повторяются в той же последовательности.

Рабочий цикл двухтактного карбюраторного двигателя аналогичен рабочему циклу двухтактного дизеля. Отличие состоит в том, что в цилиндр поступает не чистый воздух, а горючая смесь, и в конце процесса сжатия в цилиндре посредством свечи зажигания подается искра, в результате чего происходит воспламенение горючей смеси.

Одним из преимуществ двухтактного двигателя по сравнению с четырехтактным является то, что каждый рабочий ход здесь протекает в период одного оборота коленчатого вала, а не двух. Очевидно, что снижение количества тактов должно привести к повышению КПД из-за уменьшения паразитических процессов . А поскольку в четырехтактном двигателе за два оборота коленчатого вала протекают четыре такта, из которых полезным является лишь такт рабочего хода (т. е. остальные три такта являются паразитическими), то естественно предположить, что КПД четырехтактного двигателя должен быть ниже, чем КПД четырехтактного двигателя.

Существенными недостатками двухтактных двигателей является их низкая топливная экономичность и меньший срок службы по сравнению с четырёхтактными двигателями. Объясняется этот недостаток тем, что при продувке цилиндра (или цилиндров) свежая горючая смесь частично удаляется вместе с отработавшими газами, поскольку, в отличие от четырехтактного двигателя, выпуск и впуск газов протекает одновременно.
Этими недостатками, а также большей токсичностью отработавших газов объясняется ограниченное применение двухтактных двигателей на автомобилях.

Принцип работы дизельного двигателя

Многие люди смогут отличить работу дизельного двигателя по его характерному шуму при работе и характерному черному дыму из выхлопной трубы. Но стоит спросить о возможной причине стука или дыма, и единицы смогут дать точный и верный ответ. Первым шагом при диагностировании неисправностей является знание и понимание основных принципов работы дизеля.

Дизельные двигатели схожи по конструкции с бензиновыми двигателями и тоже работают по двух- или четырехтактным циклам. Только есть существенное отличие: двухтактные бензиновые двигатели применяются на маленьких и легких агрегатах, например как мопед, бензопила, маленькая моторная лодка, а 2-тактные дизеля используются в основном для очень крупных и низкооборотных агрегатов, например судовых двигателей.

Всасывание и воспламенение.

Главные отличия дизеля от бензинового ДВС — это подача топливовоздушной смеси в рабочий цилиндр и способ воспламенения. В бензиновом двигателе бензин смешивается с воздухом до того, как смесь попадает в цилиндр, далее образованная смесь поджигается в нужный момент свечой зажигания. Практически во всех режимах дроссельная заслонка дозирует воздушный поток и, соответственно, поступающую в двигатель смесь.

В дизель воздух поступает в цилиндр раздельно с топливом и после сжимается. Из-за большой степени сжатия (компрессия 20:1), воздух разогревается до температуры больше 700°С. В момент, когда поршень поднимается в ВМТ (конец сжатия), топливо под большим давлением подается в камеру сгорания в распыленном состоянии. Солярка смешивается с разогретым воздухом и происходит воспламенение топливовоздушной смеси. При сгорании смеси выделяется энергия, которая двигает поршень вниз и начинается рабочий ход. При низкой температуре воздуха снижается текучесть дизельного топлива, обусловленная образованием парафина. Из-за этого солярка становится густой и забивает поры топливного фильтра. Фирмы-производители дизтоплива добавляют в него особые присадки, повышающие текучесть топлива, тем самым гарантируя надежный пуск до температуры -22°С. Если при похолодании в баке залито летнее топливо, в бак следует добавить специально предназначенную разжижающую присадку. При запуске в холодную погоду температура сжимаемого воздуха в цилиндре может быть недостаточной для возгорания топлива. Это решается с помощью системы предварительного подогрева. Двигатели могут оснащаться системой предварительного подогревания. В ней используются электрические свечи накала, нагревающие воздух в камерах сгорания перед и во время запуска двигателя. В большинстве дизельных ДВС не используется дроссельная заслонка во впускном коллекторе. Исключением являются двигатели, в которых установлен пневматический регулятор, его работа основана на разрежении во впускном коллекторе. Также дроссельная заслонка редко используется для работы усилителя тормозов, для этого применяется отдельный вакуумный насос. Самое явное преимущество дизельного двигателя состоит в том, что из-за большой степени сжатия поступающего воздуха, дизель является намного термоэффективным двигателем. Это означает, что он выдаст большую мощность от заданного объема топлива. Результатом является: авто с дизельным двигателем проедет большее расстояние на данном количестве топлива, чем аналогичный автомобиль с бензиновым ДВС с тем же рабочим объемом.

История дизельного двигателя.

В 1890 году Рудольф Дизель обосновал теорию «экономичности термического двигателя», который согласно большому давлению в цилиндрах значительно повышает свое КПД. Хоть Дизель и был первым, кто собрал и запатентовал двигатель с воспламенением от сильного сжатия, инженер Экройд Стюарт до этого высказывал подобные идеи. Он создал двигатель, в котором воздух затягивался в цилиндр, далее сжимался, а после нагнетался в емкость, в которую затем впрыскивалось топливо. Для пуска двигателя емкость снаружи нагревалась лампой, а после запуска работа поддерживалась без тепла, подводимого снаружи.

Читать еще:  Что если масло в двигателе на верхней отметке

Экройд Стюарт не увидел главного преимущества от высокой степени сжатия, он всего лишь экспериментировал с вероятностью исключить свечи зажигания из двигателя, т.е. он не принял во внимание самое важное преимущество – топливную экономию и эффективность. Может, это и явилось причиной того, что до сих пор используют термин «дизельный двигатель», «двигатель Дизеля», или просто «дизель», т.к. теория Р. Дизеля явилась основой для проектирования современных силовых агрегатов с воспламенением от сильного сжатия. В дальнейшем около 30 лет подобные двигатели очень широко применялись в штатных механизмах и силовых агрегатах морских судов, но существовавшие в то время системы впрыска не позволяли применять дизель в высоко-оборотистых механизмах. Низкая скорость вращения, большой вес компрессора, требуемого для работы системы впрыска, делали невозможным применение первых дизельных двигателей на автомобильном транспорте.

В 20-е годы XX столетия инженер из Германии Роберт Бош доработал встроенный топливный насос, агрегат, который широко используется и по сей день. Применение гидравлической системы для подачи и впрыска топлива позволило не использовать отдельный воздушный компрессор и позволило в дальнейшем увеличить скорость вращения. Востребованный высоко-оборотистый дизель стал пользоваться огромной популярностью как двигатель для общественного и вспомогательного транспорта, но доводы в сторону двигателей с электрическим зажиганием позволяли им пользоваться огромным спросом для установки на пассажирских авто и малых грузовиках. В 50-е и 60-е годы дизель ставится в больших объемах на грузовики и фургоны, а в 70-е годы после сильного подъема цен на топливо, к нему обращают свое внимание мировые производители дешевых небольших пассажирских авто.

В последующие годы растет популярность дизеля на легковых и грузовых машинах, не только из-за долговечности и экономичности дизеля, а также из-за малой токсичности отработанных газов. Все основные европейские авто-производители в настоящее время предлагают модели с дизельным силовым агрегатом.

Как работает дизель.

В первом такте (впуск), поршень опускается вниз, порция воздуха затягивается в цилиндр через впускной клапан.

Во втором такте (сжатие), поршень поднимается вверх, впускной и выпускной клапана закрыты, воздух сжимается в среднем в 17 раз (от 14 до 24), т.е. начальный объем уменьшатся в 17 раз, и воздух сильно нагревается.

В начале третьего такта (рабочий ход) поршень опять опускается вниз, топливо поступает в камеру сгорания через форсунки. Топливо распыляется на мельчайшие частицы, смешивающиеся со сжатым воздухом для образования самовоспламеняющейся смеси. При движении поршня энергия сгорания высвобождается.

Выпускной клапан открывается, в начале четвертого такта (выпуск) поршень поднимается вверх, и отработанные газы выходят через выпускной клапан.

Плюсы и минусы дизельных двигателей.

Бензиновый двигатель очень неэффективен и преобразует в полезную работу не более 26% энергии топлива. Дизельный же двигатель имеет КПД равный 36%. Дизельное топливо обычно дешевле.

Отсутствие электрического зажигания является преимуществом для всех видов двигателей, увеличивается надежность, уменьшается токсичность выхлопных газов, что особенно важно. Дизельный силовой агрегат выдает большой крутящий момент в наиболее широком диапазоне оборотов, что наделяет дизельный автомобиль большей «гибкостью» при движении. Это является неоспоримым преимуществом и в корабельных двигателях , т.к. большой крутящий момент при малых оборотах облегчает эффективное применение мощности двигателя.

Есть и иные преимущества. Выхлопные газы дизеля являются более «чистыми» по сравнению с газами, выделяемыми бензиновым двигателем. Окиси углерода практически нет в отработанных газах дизеля, поэтому ядовитыми газами, являются углеводороды, окислы азота и сажа (тот самый четный дым). Они приводят к астме и заболеваниям легких. Больше всего “чадят” атмосферу дизели автобусов и грузовиков, которые являются старыми и часто не отрегулированными.

Концентрация углекислого газа может быть уменьшена с помощью ЕСК — системы рециркуляции отработавших газов. Данная система забирает часть отработанных газов из выпускного коллектора через патрубок во впускной коллектор. Процесс контролируется специальным клапаном, и благодаря снижению температуры сгорания, концентрация углекислоты снижается. Для значительного снижения выбросов углеводородов и углекислот используются каталитические нейтрализаторы окислительного типа. Касательно остающейся серы, качественное и профессиональное обслуживание дизельных силовых агрегатов, в сочетании с отделителями частиц, помогает минимизировать черный дым.

Прочим важным вопросом, касающимся безопасности, является то, что дизтопливо нелетучее, и, таким образом, возможность возгорания дизельных двигателей очень мала.

Безусловно, есть и недостатки, среди них характерный стук при работе и «жирное» топливо и некоторые проблемы с заведением зимой. Но они замечаются только владельцами “дизелей”, а для постороннего человека практически не видны.

Базовая конструкция дизельного двигателя аналогична бензиновому двигателю. Одинаковые узлы и агрегаты у дизеля обычно увесистее и более устойчивы к высокому давлению, имеющему место у дизеля. Поршневые головки специально спроектированы под особенности работы в дизельных двигателях и часто под завышенную степень сжатия. А еще головки поршней находятся немного выше верхней поверхности блока цилиндров в момент, когда поршень находится в ВМТ своего хода. В большинстве случаев головки поршней содержат в себе и саму камеру сгорания.

Степень сжатия — это соотношение рабочего объема над поршнем, когда он находится в своей НМТ к объему, когда поршень находится в своей верхней мертвой точке. Поршни, применяемые на дизельных двигателях малого объема, почти всегда спроектированы так, чтобы они выступали над верхней поверхностью блока цилиндров, когда сам поршень находится в ВМТ. Когда ДВС собран, величину выступа следует проверить и правильно отрегулировать, если она не соответствует допускам завода-изготовителя. Величина выступания крайне важна для нужной степени сжатия и в то же время обеспечивает, чтобы клапаны не сталкивались с головками поршней. Данная высота выступания проверяется проворачиванием коленвала вручную, медленно подводя к ВМТ, высота замеряется с помощью спецприборов. На некоторых силовых агрегатах малого объема присутствует набор прокладок разной толщины. В различных случаях на края прокладок нанесены насечки, она предназначены для легкости определения толщины прокладки. Необходимая толщина подбирается для обеспечения точного выступания над плоскостью прокладки при монтаже, а не над самой плоскостью блока цилиндров. Необходимо руководствоваться инструкцией по конкретному двигателю для правильного определения толщины прокладки. Для прочих двигателей также можно подбирать и сими поршни. Затем для верной установки следует изменить вертикальный размер поршней и подобрать их нужного размера, обеспечив правильное выступание. Если на старых двигателях с большим объемом выступание значительное, головки поршней могут обрабатываться механически.

Механизм привода впускных и выпускных клапанов обычный, так же как и привод распределительного вала с тем отличием, что распредвал вращает и ТНВД на некоторых двигателях. Обычно привод с зубчатым ремнем, цепной или на шестернях.

Топливный насос в движение приводится промежуточной шестерней, которая приводит в действие также и распределительный вал. Главные отличия между дизельными и бензиновыми ДВС состоят в подаче воздуха, в которой отсутствует дроссельная заслонка в составе камер сгорания и наличии топливного насоса высокого давления или насос-форсунок на месте трамплера и карбюратора или инжекторной системы впрыска бензина. В классических бензиновых двигателях с впрыском, бензин подается во впускной коллектор при малом давлении в топливной рампе и смешивается с воздухом перед цилиндрами. В дизельных и в некоторых бензиновых двигателях топливо подается под большим давлением непосредственно в сами цилиндры. Большая часть дизельных двигателей относятся к виду с неразделенной камерой сгорания (непосредственный впрыск). Они имеют простую плоскую ГБЦ с камерой сгорания, образуемой в самой головке поршня — образуется вихрь из поступающего воздухе благодаря специальной конструкции впускного коллектора. Данные двигатели лучше запускаются и экономичнее работают, но более шумные и не обеспечивают полного сгорания, что является источником образования черного дыма из выхлопной трубы. В двигателях с непосредственным впрыском применяются форсунки с распылителями, чтобы лучше распределять топливо по всему объему камеры сгорания.

Из-за постоянной конкуренции с бензиновыми двигателями, большинство дизелей имели предкамерный тип впрыска, в котором сгорание смеси начинается предкамере).

Опять следует отметить вихрь воздуха, поступаемого в предкамеру. Предкамера находится внутри ГБЦ, и форсунка входит в нее. Данные двигатели не дают экономии топлива, как у силовых агрегатов с непосредственным впрыском, и они тяжелее заводятся в холоде. Но они тише и мягче работают, что является одним из главных условий для автомобильного дизельного двигателя.

В попытках достичь лучших результатов последним явилась система впрыска «коммон-рэил», которая отличается от прочих систем непосредственного впрыска. В то время как стандартные системы создают давление для каждой форсунки заново, у разработанной системы давление дизтоплива поддерживается в общей топливной рампе и разделяется по форсункам. Электрическая система управления двигателем с ЭБУ изменяет давление до 1350 бар независимо от цикла впрыска в соответствии с количеством оборотов и нагрузкой на двигатель.

Форсунки, оснащенные специальными соленоидными клапанами, могут управляться другим образом. Вместе с большим давлением впрыска, которое существует и на малых оборотах, изменяемый впрыск обеспечивает улучшенное образование горючей смеси топлива в цилиндрах. Результатом является лучшая топливная эффективность и сниженная токсичности выхлопных газов.

Версия для печати

Как с нами связаться

ООО «Чистодел-Дизель»

г. Арамиль, ул. Гарнизон, д. 17В

Географические координаты:

8 800 200 0921

(звонок по РФ бесплатный)

+7 (343) 302-00-43


infoek-ar.ru

Клапана газораспределения

Постоянно на складе и под заказ впускные и выпускные клапана газораспределения судовых двигателей:

клапан впуска 4Ч 8,5/11
клапан выпуска 4Ч 8,5/11
клапан впуска 6Ч 9,5/11
клапан выпуска 6Ч 9,5/11

клапан впускной 4Ч 10,5/13
клапан выпускной 4Ч 10,5/13
клапан впускной 6Ч 12/14
клапан выпускной 6Ч 12/14

клапан впускной 3Д6/Д12
клапан выпускной 3Д6/Д12

клапан впускной 6ЧН 18/22
клапан выпускной 6ЧН 18/22

Читать еще:  2107 стартер не заводится на горячий двигатель

клапан впускной 6ЧН 25/34
клапан выпускной 6ЧН 25/34

клапан впускной 6Ч 23/30
клапан выпускной 6Ч 23/30
клапан впускной Г60 (6ЧН 36/45)
клапан выпускной Г60 (6ЧН 36/45)

клапан впускной 6S 160
клапан выпускной 6S 160

Клапаны (впускной клапан, выпускной клапан) – детали двигателя, служащие для периодического открывания и закрывания отверстий впускных и выпускных каналов в зависимости от положения поршней в цилиндре и от порядка работы двигателя.

Клапаны расположены в головке цилиндров под углом к вертикальной оси цилиндров. Стальной впускной клапан изготовлен цельным, а выпускной состоит из двух частей, соединённых в заготовке сваркой. Верхняя часть клапана — его стержень — изготовлена из стали, имеющей высокую износостойкость, нижняя часть стержня и головка выпускного клапана сделаны из термостойкой стали.

Уплотнительной поверхности клапанной головки приходится входить в соприкосновение с клапанным седлом до 70 раз в секунду. Возникающие при этом динамические усилия, а также силы клапанных пружин и давление воспламенения представляют собой весьма серьезное испытание для этих деталей.

Особенно сильному нагреву подвергается выпускной клапан: отработанный газ имеет температуру до 800°С. В течение того короткого времени, пока рабочие поверхности входят в соприкосновение друг с другом, необходимо осуществить максимальную передачу тепла с клапанного седла на головку цилиндра.
Правильный выбор впускных/выпускных клапанов
Выбор материала

При выборе клапанов для форсированного двигателя наибольшее количество вопросов вызывает именно выбор материала. Производители предлагают широкий выбор материалов, удовлетворяющий требованиям практически любого двигателя. Некоторые производители имеют в своем ассортименте один-два типа материала, заявляя при этом о его универсальности и том, что он подходит ко всем моторам. Однако если взять в расчет условия, в которых приходится работать клапанам, становится понятным необоснованность таких заявлений, один тип материала ни в коем случае не может подойти ко всем без исключения двигателям. Основная разница между впускными и выпускными клапанами состоит в различных рабочих температурах. Выпускные клапаны находятся под постоянным воздействием крайне разрушительных газов, а температуры часто превышают рубеж 760°С. Впускные же клапаны постоянно охлаждаются потоками воздушно-топливной смеси и не разогреваются до таких температур. Специфические сплавы впускного клапана при своей не слишком высокой рабочей температуре могут оказаться прочнее нержавеющей стали выпускного клапана.
Конструкция головки клапана

Форма головки клапана и ее размеры имеют особое значение для мощности двигателя. А ключевым звеном является диаметр головки и угол седла. Клапаны, имеющие вогнутую со стороны камеры сгорания головку, — несколько легче обычных, но из-за увеличенного объема камеры сгорания имеет место некоторое падение компрессии. Диаметр головки клапана прямо пропорционально связан с интенсивностью прохождения потоков воздушно-топливной смеси и, следовательно, мощностью двигателя. То есть клапан должен иметь достаточный для свободного прохождения потоков смеси диаметр головки. Повысить мощность двигателя можно установив в головку блока клапаны с увеличенным диаметром головок. Такие клапаны, однако, имеют и недостаток – заметное снижение пиковой мощности и крутящего момента. Выбор диаметра клапана в итоге оказывается компромиссом между низкими оборотами и пиковой мощностью, определяющим же фактором при этом является предназначение двигателя. В обычных, нетурбированных двигателях, диаметр головки впускного клапана больше диаметра выпускного на 25%.
Угол седла клапана

Угол седла клапана обычно определяется производителем двигателя, хотя измерить его можно в любой мастерской. Даже если в распоряжении мастерской имеется гидростенд, лучше не испытывать судьбу и следовать рекомендациям производителя относительно угла седла, поскольку его значение имеет огромное значение. При обработке седла клапана необходимо уделять особое внимание точности. Для того, чтобы контактная поверхность седла соприкасалась с нужной точкой фаски клапана и имела требуемую ширину (1,15 – 1,5 мм), седло должно быть обработано под несколькими углами. Профессионально обработанные седла (как показано на рисунке 1) могут существенно повысить мощность двигателя. При измерении углов нужно быть внимательным, в некоторых двигателях, как, например, у показанного на рисунке 2 двигателя Honda S2000, имеют место сужающиеся углы.
Обработка нижней части головки клапана – полировка

Форма нижней части головки клапана и качество ее обработки также влияет на прохождение потоков смеси через клапан. Нижняя поверхность головок высококачественных клапанов проходит специальную механическую обработку, повышающую прочность клапана и облегчающую прохождение потоков смеси. Полировка имеет несколько положительных сторон. Во-первых, благодаря удалению с поверхности всех неровностей первичной обработки облегчается прохождение потоков смеси, а во-вторых, в процессе полировки удаляются все возможные концентраторы напряжения.
Конструкция штока клапана – диаметр и выточка на штоке

Именно шток является опорной поверхностью, контактирующей с направляющей клапана. Упор же клапана должен обладать достаточным запасом прочности, способным выдерживать постоянные нагрузки, передаваемые на клапан качающимся рычагом. Диаметр штока зависит от того, какой вес и запас прочности ожидается от клапана. Некоторые клапаны премиум-класса имеют вырезку на штоке. Вырезка уменьшает диаметр в области ниже направляющей и ощутимо увеличивает проходимость смеси при низком подъеме головки клапана. При этом слегка снижается вес клапана. Существенно снизить вес клапана можно уменьшив диаметр его штока.
Покрытие клапана и его зазор

Хромирование штока клапана увеличивает его долговечность в условиях недостаточного смазывания. Это особенно актуально для сильно разогревающихся выпускных клапанов. В настоящее время покрытие имеют все более или менее качественные клапаны, что позволяет удовлетворить требованиям самых строгих маслосберегающих технологий. Зазор между штоком клапана и направляющей зависит от многих факторов: диаметра штока, предназначения двигателя, свойств материала направляющей и типа сальника клапана. Клапаны, имеющие недостаточный зазор, могут привести к значительно большим повреждениям двигателя, чем клапаны с чрезмерным зазором. Наиболее распространенные значения зазора впускных клапанов – 0,04-0,06 мм, выпускных – 0,05-0,075 мм.
Конструкция замка клапанной пружины

Наиболее распространенная конструкция замка клапанной пружины – прямоугольной формы канавка. Компоненты такого замка представлены в широком ассортименте форм и типов материалов. Кроме этого свою эффективность доказали и многоканавочные замки, позволяющие клапану вращаться независимо от пружины и ее тарелки. Благодаря этому достигается равномерный износ и чистота контактных поверхностей фаски клапана и седла, а это в свою очередь увеличивает долговечность клапана. И хотя среднестатистический автомобиль великолепно работает с многоканавочной конструкцией замка тарелки пружины, для форсированных двигателей рекомендуется одноканавочная конструкция. Полукруглая форма канавки замка объективно нужна только в клапанах с очень маленьким диаметром штока, работающих на пределе прочности. Поломка клапана в области канавки замка – довольно нетипичное явление.
Конструкция упора клапана

Упор клапана должен обладать достаточным запасом прочности, чтобы противостоять постоянному давлению качающегося рычага. Нержавеющую сталь невозможно закалить до такого уровня, чтобы она выдерживала подобные нагрузки, поэтому упор необходимо либо наваривать, либо делать съемным. Сплавы не на основе нержавеющей стали хорошо поддаются закалке и не нуждаются в наварных упорах или других укрепленных элементах. Шток клапана с многоканавочной конструкцией замка должен быть закален в области канавок либо наварен, если материал головки – нержавеющая сталь.
Вес клапана

Вес двигателя может быть фактором, ограничивающим обороты двигателя. Этот фактор обязательно нужно учитывать при его конструировании. При этом, учитывая больший размер впускных клапанов, им нужно уделять особое внимание. Вырезка на штоке клапана – незначительное снижение веса. Большого результата можно добиться, уменьшив диаметр штока клапана. Титановые клапаны хотя и дорого стоят, но имеют существенно меньший вес, что положительно сказывается на оборотах двигателя и долговечности пружин клапанного привода.
Зазор между поршнем и клапаном

Ни один клапан не выдержит удара о поршень. Основной причиной выхода из строя головок блока является именно такие удары. Рекомендуемый зазор между ними – 2,5 мм, хотя это значение и может показаться слишком большим. Безусловно. Меньший зазор обеспечит лучшие результаты, но при этом придется жертвовать надежностью двигателя.
Материалы для производства впускных и выпускных клапанов

Материалы для производства клапанов должны удовлетворять всем требованиям двигателя. Термин “нержавеющая сталь” обычно применяется по отношению ко сплавам стали, содержащим как минимум 10% хрома. Как будет показано ниже, сплав сильхром 1 приближается к этому уровню при том что стоимость его остается на уровне дешевых высокоуглеродистых сплавов.

Sil XB, 422, 21-2N и 21-4N: сплавы нержавеющей стали.

1541: высокоуглеродистая сталь с добавками марганца, повышающими коррозионную устойчивость. 8440: стальной сплав, пригодный для производства работающих с повышенными нагрузками клапанов. Для повышения термостойкости в сплав добавлен хром.

Sil1: стальной сплав с 8,5% содержанием хрома, пригодный для производства работающих с повышенными нагрузками клапанов. Используется для изготовления высококачественных впускных клапанов.

Sil XB: ферритный сплав, содержащий 20% хрома и 1,3% никеля. Используется для производства впускных клапанов, работающих с высокими нагрузками.

422: сплав нержавеющей стали, используемый для изготовления высококачественных впускных клапанов. Сплав разработан специально для впуcкных клапанов, диапазон рабочих температур его не подходит для изготовления выпускных клапанов. Клапаны из этого сплава часто имеют обозначение “для жестких условий”.

Ti-6: титан – легкий неферритный материал, применяемый для изготовления клапанов, работающих в высокооборотистых спортивных двигателях. Он на 40% легче стали и сохраняет прочность при высоких температурах. Обычно из титана изготавливаются впускные клапаны большого диаметра, хотя можно встретить и выпускные клапаны из этого материала.

21-2N: аустенитный стальной сплав, содержащий 21% хрома и 2% никеля. Наиболее популярный материал для изготовления выпускных клапанов, сохраняет свойства при существенных повышениях температуры. Благодаря дополнительной обработке характеристики клапана из такого материала можно приблизить к оптимальным. В итоге получается недорогой и очень качественный клапан.

21-4N: аустенитный стальной сплав, похожий по качествам на 21-2N, но с более высоким содержанием никеля (4%). Используется как альтернатива сплаву 21-2N.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector