Autoservice-mekona.ru

Автомобильный журнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что образуется в качестве выхлопа в водородных двигателях

Определили жизнеспособность водородных двигателей

Водород до сих пор изо всех сил пытался выполнить свои ранние обещания в качестве альтернативного топлива для автомобильного транспорта, но до сих пор его популярность очень низка.

Использование водорода в топливных элементах для производства электроэнергии без вредных выбросов по-прежнему имеет огромный потенциал, но импульс для запуска двигателей внутреннего сгорания на нем уменьшился. Тем не менее интерес остается, примером является разработка Toyota водородного трехцилиндрового гоночного двигателя, взятого у GR Yaris и используемого для питания специально разработанной Corolla Sport, участвующей в гонке Fuji 24 Hours.

Хотя водород является чистым топливом по сравнению с бензином или дизельным топливом, он полностью исключает выбросы только при преобразовании в системе топливных элементов для выработки электроэнергии. При сгорании в двигателе это не совсем так. Хотя не образуются несгоревшие углеводороды (HC), окись углерода (CO) или CO2, образуются оксиды азота (NOx). Воздух на 78% состоит из азота, и при сгорании он окисляется, образуя токсичный NOx – но сколько именно, зависит от того, насколько горячими становятся предметы в камере сгорания, и именно в этом водородные двигатели могут иметь преимущество.

Водород гораздо менее требователен, чем бензин или дизельное топливо, смешивается и горит полностью и эффективно в гораздо более широком диапазоне соотношений воздуха и топлива. В результате водородный двигатель может работать очень экономно (больше воздуха, меньше топлива) и при этом производить гораздо более низкие уровни выбросов NOx на выходе из двигателя, чем бензин или дизель. Выбросы из выхлопной трубы могут быть уменьшены до минимального уровня с помощью существующей технологии выхлопных газов.

Эти привлекательные факты зависят от ряда вещей. Хотя водород несет большое количество энергии по массе, он гораздо менее плотный, чем жидкое топливо, поэтому двигатели с впрыском, в которых топливо впрыскивается во впускной коллектор и смешивается с воздухом вне цилиндров, вырабатывают значительно меньшую мощность, работающую на водороде чем на бензине. Непосредственный впрыск улучшает ситуацию и в сочетании с турбонаддувом с изменяемой геометрией делает водородные двигатели внутреннего сгорания более жизнеспособными.

Но все же есть компромисс. Современные водородные двигатели с турбонаддувом прямого впрыска могут производить больше энергии, чем эквивалентный бензиновый двигатель, увеличивая долю водорода в топливно-воздушной смеси, но уровень NOx увеличивается. В противном случае водородные двигатели по существу являются модифицированными бензиновыми двигателями, которые в производственной форме имели бы более прочные компоненты и системы прямого впрыска водорода. Водород можно хранить в тех же хорошо зарекомендовавших себя баках для сжатого газа на 700 бар, которые используются в транспортных средствах на топливных элементах.

Более поздние исследовательские программы предполагают, что существует реальная возможность запуска транспортных средств с двигателем внутреннего сгорания, которые практически не загрязняют окружающую среду, используя технологию, которая подходит как для тяжелых транспортных средств, так и для легковых автомобилей. Грацский технологический университет совместно с компанией Bosch добился некоторых обнадеживающих результатов с 2,0-литровым двигателем с турбонаддувом с искровым зажиганием, а Рикардо возглавляет исследовательскую программу по водородным двигателям для тяжелых транспортных средств.

Учитывая близость к существующей технологии и производству, сжигание этого обильного газа легче воздуха может стать полезным шагом к полной электрификации, а также стимулировать развитие водородной сети, необходимой для транспортных средств на топливных элементах.

Водородный двигатель: принцип работы и устройство

Как известно, поршневой двигатель внутреннего сгорания имеет как плюсы, так и целый ряд определенных недостатков. Прежде всего, глобальной проблемой является токсичный выхлоп бензиновых и дизельных ДВС, а также постоянная потребность в нефтяном топливе. Не сильно меняется ситуация и после перевода автомобиля на газ, так как установка ГБО также не решает всех задач.

С учетом данных особенностей постоянно ведутся разработки альтернативных вариантов. Сегодня реальным конкурентом ДВС является электродвигатель. При этом относительно небольшой запас хода, высокая стоимость аккумуляторных батарей и всего электрокара (электромобиля) в целом, а также отсутствие развитой инфраструктуры по ремонту и обслуживанию таких машин закономерно тормозит их популяризацию.

Среди подобных двигателей следует отдельно выделить водородный ДВС, который вполне может заменить существующий на сегодня дизельный или бензиновый мотор, причем в обозримой перспективе. Давайте рассмотрим, как работает водородный двигатель, какую конструкцию имеет подобный мотор и в чем заключаются его особенности.

История создания водородного двигателя

Начнем с того, что идеи построить водородный мотор появились еще в 1806 г. Основоположником стал Франсуа Исаак де Риваз, который получал водород из воды методом электролиза. Как видно, двигатель на водороде «родился» задолго до того, как был поднят ряд вопросов касательно окружающей среды и токсичности выхлопа.

Другими словами, попытки запустить ДВС на водороде были предприняты не для защиты окружающей среды, а в целях банального использования водорода в качестве топлива. Спустя несколько десятков лет (в 1841 г.) был выдан первый патент на такой двигатель, в 1852 г. в Германии появился агрегат, который успешно работал на смеси воздуха и водорода.

Однако после окончания войны дальнейшее развитие водородного двигателя было приостановлено как в СССР, так и во всем мире. Затем об этом двигателе вспомнили только тогда, когда в 70-е годы XX века случился топливный кризис. В результате компания BMW в 1979 г. построила автомобиль, двигатель которого использовал водород в качестве основного топлива. Агрегат работал относительно стабильно, не было взрывов и выбросов водяного пара.

Другие автопроизводители также начали работы в этой области, в результате чего к концу XX века появилось не только много прототипов, но и вполне успешно действующих образцов двигателей на водородном топливе (бензиновый и дизельный двигатель на водороде).

Однако после того как топливный кризис окончился, работы над водородными ДВС также были свернуты. Сегодня интерес к альтернативным источникам энергии снова растет, теперь уже по причине серьезных экологических проблем, а также с учетом того, что запасы нефти на планете быстро сокращаются и на нефтепродукты закономерно растут цены.

Читать еще:  Где находится датчик давления масла на двигателе крайслер

Также правительства многих стран стремятся стать энергонезависимыми, а водород является вполне доступной альтернативой. На сегодняшний день над водородными ДВС ведут работы GM, BMW, Honda, корпорация Ford и т.д.

Работа двигателя на водороде: особенности водородного ДВС

Начнем с того, что двигатель внутреннего сгорания на водороде по своей конструкции не сильно отличается от обычного ДВС. Все те же цилиндры и поршни, камера сгорания и сложный кривошипно-шатунный механизм для преобразования возвратно поступательного движения в полезную работу.

Единственное, в цилиндрах сгорает не бензин, газ или солярка, а смесь воздуха и водорода. Также нужно учитывать и то, что способ подачи водородного топлива, смесеобразование и воспламенение также несколько другой по сравнению с аналогичными процессами в традиционных аналогах.

На водороде реакция протекает быстрее, что позволяет сдвинуть наполнение цилиндра на момент, когда поршень уже начинает движение в НМТ (нижняя мертвая точка). Также после того, как протекает реакция, результатом становится обычная вода вместо токсичных выхлопных газов. Как видно, на первый взгляд стандартный двигатель относительно легко подстроить под водородное топливо путем доработок впуска, выпуска и системы питания, однако это не так.

Первая проблема заключается в том, как получать необходимый водород. Как известно, водород находится в составе воды и является распространенным элементом, однако в чистом виде практически не встречается. По этой причине для максимальной автономности на транспортное средство нужно отдельно ставить водородные установки, чтобы «расщеплять» воду, позволяя мотору питаться необходимым топливом.

Идея кажется привлекательной. Более того, можно даже обойтись без наружного воздуха на впуске и создать закрытую топливную систему. Другими словами, после каждого раза, когда в камере сгорит заряд, в цилиндре будет оставаться водяной пар. Если этот пар пропустить через радиатор, произойдет конденсация, то есть снова образуется вода, из которой можно повторно получить водород.

Дело в том, что любой двигатель внутреннего сгорания независимо от типа топлива все равно нуждается в системе смазки, чтобы защитить нагруженные узлы и трущиеся пары. Если просто, без моторного масла никак не обойтись. При этом масло частично попадает в камеру сгорания и затем в выхлоп. Это значит, что полностью изолировать топливную систему на водороде (не использовать наружный воздух) практически нереализуемая задача.

По этой причине современные водородные двигатели внутреннего сгорания больше напоминают газовые двигатели, то есть агрегаты на газе пропане. Чтобы использовать водород вместо пропана, достаточно изменить настройки такого ДВС. Правда, КПД на водороде несколько снижается. Однако и водорода нужно меньше, чтобы получить необходимую отдачу от мотора. При этом никаких установок для автономного получения водорода не предполагается.

Что касается попытки подать водород в обычный бензиновый или дизельный двигатель, автоматически возникают риски и сложности. Прежде всего, высокие температуры и степень сжатия могут привести к тому, что водород будет вступать в реакцию с нагретыми элементами ДВС и моторным маслом.

Так или иначе, даже с учетом всех сложностей, ряд проблем удается обойти не только на роторных, но даже и на поршневых моторах, что позволяет водороду считаться достаточно перспективной альтернативой бензину, газу или солярке. Например, экспериментальная версия модели BMW 750hL, которую представили в 2000 году, имеет водородный двигатель на 12 цилиндров. Агрегат успешно работает на таком горючем и способен разогнать автомобиль до скорости около 140 км/час.

Правда, никаких отдельных установок для получения водорода из воды на машине не имеется. Вместо этого стоит особый бак, который просто заправлен водородом. Запас хода на полном баке водорода составляет около 300 км. После того, как водород закончится, двигатель в автоматическом режиме начинает работать на бензине.

Двигатель на водородных топливных элементах

Обратите внимание, под водородными двигателями понимаются как агрегаты, работающие на водороде (водородный ДВС), так и моторы, которые используют водородные топливные элементы. Первый тип мы уже рассмотрели выше, теперь давайте остановимся на втором варианте.

Топливный элемент на водороде фактически представляет собой «батарейку». Другими словами, это водородный аккумулятор с высоким КПД около 50%. Устройство основано на физико-химических процессах, в корпусе такого топливного элемента имеется особая мембрана, проводящая протоны. Эта мембрана разделяет две камеры, в одной из которых стоит анод, а в другой катод.

В камеру, где расположен анод, поступает водород, а в камеру с катодом попадает кислород. Электроды дополнительно покрыты дорогими редкоземельными металлами (зачастую, платиной). Это позволяет играть роль катализатора, который оказывает воздействие на молекулы водорода. В результате водород теряет электроны. Одновременно протоны идут через мембрану на катод, при этом катализатор также воздействует и на них. В итоге происходит соединение протонов с электронами, которые поступают снаружи.

Подобные водородные двигатели позволяет пройти не менее 200 км. на одном заряде. Основным минусом является высокая стоимость топливных элементов по причине использования платины, палладия и других дорогих металлов. В результате конечная стоимость транспорта с таким двигателем сильно возрастает.

Водородный двигатель: дальнейшие перспективы

Сегодня над созданием экологичных двигателей трудятся многие компании. Некоторые идут по пути создания двигателей-гибридов, другие делают ставку на электромобили и т.д. Что касается водородных установок, в плане экологии и производительности данный вариант также может в ближайшее время составить конкуренцию ДВС на бензине, газе или дизтопливе.

Водородные двигатели показали себя несколько лучше, чем самые продвинутые электрокары. Например, японская модель Honda Clarity. Единственное, остался такой недостаток, как способы и возможности заправки. Дело в том, что инфраструктура водородных заправочных станций не особенно развита, причем в мировом масштабе.

Дополнительно стоит отметить модель Toyota Mirai. Автомобиль работает только на водороде, одного бака хватает на 600 км. Водородные двигатели еще встречаются на отечественной модели «Нива», а также устанавливаются корейцами на специальную версию внедорожника Hyundai Tucson.

Как видно, с двигателем на водороде активно экспериментируют многие производители, однако такое решение все равно имеет много недостатков. При этом некоторые минусы сильно мешают массовой популяризации.

Прежде всего, это безопасность и сложность транспортировки такого топлива. Важно понимать, что водород весьма горюч и взрывоопасен даже при относительно невысоких температурах. По этой причине его сложно хранить и перевозить. Получается, необходимо строить особые водородные резервуары для авто с данным типом двигателя. Как результат, на практике водородных заправок очень мало.

Читать еще:  Что будет если в дизельный двигатель попадет бензин

К этому также можно добавить определенную сложность и высокие расходы на ремонт и обслуживание водородного агрегата, а также необходимость в подготовке и обучении большого количества высококвалифицированного персонала. Если же говорить о самом авто на водороде и его эксплуатационных характеристиках, наличие водородной установки делает машину более тяжелой, закономерно ухудшается управляемость.

Подведем итоги

Как видно, сегодня водородные автомобили и двигатель на воде можно считать вполне реальной альтернативой не только привычным ДВС, которые используют нефтяное топливо, но и электрокарам.

Прежде всего, такие установки менее токсичны, при этом они не нуждаются в дорогостоящем топливе на основе нефти. Также автомобили с водородным двигателем имеют приемлемый запас хода. В продаже имеются и гибридные модели, использующие как водород, так и бензин.

Напоследок отметим, что активное строительство трубопроводов для перекачки газа метана обещает в дальнейшей перспективе возможность перекачки по этим же трубопроводам и водорода. Это значит, что в случае роста общего числа авто с водородными двигателями, также высока вероятность быстрого увеличения количества специализированных заправочных станций.

Усовершенствание конструкции поршневого двигателя, отказ от КШМ: бесшатунный двигатель, а также двигатель без коленвала. Особенности и перспективы.

Конструктивные особенности двигателей GDI с непосредственным впрыском от моторов с распределенным впрыском топлива. Режимы работы, неисправности GDI.

Виды двигателей внутреннего сгорания, отличия различных типов ДВС. Особенности компоновки, объем двигателя, мощность, крутящий момент и другие параметры.

Двигатель семейства FSI: отличия, особенности, плюсы и минусы силового агрегата данного типа. Распространенные проблемы двигателей FSI, обслуживание мотора.

Дизельный мотор TDI. Отличительные особенности двигателя данного типа. Преимущества и недостатки, ресурс, особенности турбонаддува. советы по эксплуатации.

Что нужно знать о моторах на Рендж Ровер перед покупкой такого автомобиля б/у. С каким двигателем лучше взять данный автомобиль и почему.

Водородное будущее Китая

Китай вложит 17 млрд долларов в водородные автомобили. На эти деньги будет налажено масштабное производство топливных элементов, построена сеть высокотехнологичных АЗС и создана цепь поставок. Автомобили на водородном топливе идеально дополнят электрические, для которых Китай уже стал самым большим рынком, сообщает издание «Хайтек+».

Китай, крупнейший автомобильный рынок в мире, твердо намерен сделать транспортную отрасль экологически безопасной. Правительство страны уже вложило миллиарды долларов в развитие электромобилей, а теперь готовит аналогичные меры поддержки для машин на водородном топливе. Согласно планам, в течение десяти лет на китайские дороги должен выйти миллион водородных транспортных средств.

По данным Bloomberg, китайские инвестиции в водородный транспорт в размере более 17 млрд долларов распределены до 2023 года. 7,6 млрд долларов из них вложит Китайская национальная корпорация тяжелых грузовиков. Деньги пойдут на создание водородных автомобилей на заводе в провинции Шаньдун на восточном побережье страны.

Компания Mingtian Hydrogen, название которой переводится как «Водород завтрашнего дня», планирует инвестировать 363 млн долларов в создание промышленного парка в провинции Аньхой. Серийное производство водородных топливных элементов здесь должно начаться в следующем году. К 2022 году ежегодно будет выпускаться 100 тыс. комплектов, а к 2028 году — 300 тыс.

«Водородная революция» не будет быстрой. По прогнозам правительства, в следующем году на дорогах Китая появится всего лишь пять тысяч автомобилей, использующих этот вид топлива.

Масштабного парка коммерческого транспорта на водороде можно ожидать через пять лет, пассажирского — через десять. За это время предстоит наладить производство водорода, создать цепь поставок и построить сеть заправочных станций.

В необходимости развивать водородный транспорт уверен Вань Ган, «отец» китайских электромобилей. В свое время именно он убедил руководство страны инвестировать миллиарды в развитие электрического транспорта. Теперь он призывает правительство обратить внимание на водородные автомобили, которые дополнят электрические в качестве грузовиков и междугородних автобусов.

И совсем недавно Китай представил свой первый водородный автомобиль с рекордным запасом хода. Машина получила название Grove Obsidian, у нее уже есть спортивная версия под названием Granite. Автомобиль создан молодой, основанной в 2016 году, компанией Grove. За три года названная в честь английского физика Уильяма Гроува фирма успела собрать команду и разработать предсерийный экземпляр своей новинки. Компания уверена в преимуществах водородного топлива и в его безопасности, однако пока не готова поделиться точными характеристиками автомобиля, пишет Hi-News. Зато известны его рекордные, по словам производителя, показатели запаса хода и экономичности.

Самая главная особенность Grove Obsidian — запас хода, равный тысяче километров. Такая характеристика может заинтересовать многих покупателей, потому что другие экологически чистые автомобили не могут похвастаться такими цифрами, на одном заряде они проезжают примерно 750 километров, и это их предел. Например, такая дальность хода у Honda Clarity.

Автомобиль Grove также примечателен экономным расходом топлива благодаря облегченному корпусу из углеродных материалов и низким аэродинамическим сопротивлением. Дизайн был разработан человеком, который рисовал внешний вид автомобилей Alfa Romeo и Fiat, поэтому в его новом детище можно заметить знакомые элементы.

Заправка водородного бака занимает всего лишь три минуты, а при езде из выхлопной трубы выходит экологически безопасный водяной пар. Многие могут подумать, что Grove Obsidian похож на передвижную водородную бомбу, но это ошибочное мнение. Топливный бак спроектирован так, чтобы выдерживать любые аварии. Если в нем образуется отверстие, водород вытекает из него в сжатом жидком виде, сгорает за полторы минуты и разогревает кузов максимум до 47 градусов Цельсия.

Серийное производство Grove Obsidian начнется в 2020 году. За первые 12 месяцев производитель намерен выпустить пять тысяч автомобилей, а к 2030 году достичь миллионной отметки. Новинка станет основой для других автомобилей компании, и у нее уже есть спортивный вариант Granite с измененным дизайном кузова.

Водород вместо нефти, газа и угля — новый тренд в Европе

Новые технологии для защиты климата: возобновляемая энергетика производит «зеленый водород», чтобы он заменял дизель на транспорте, природный газ в отоплении и уголь в металлургии.

Читать еще:  Что делать если тосол попал двигатель ваз 2110

Емкости с кислородом и водородом, полученными методом электролиза на установке в Пренцлау близ Берлина

В Европе явно назревает водородный бум. Во всяком случае, в разных странах к нему начинают активно готовиться. В последнее время в СМИ появляется все больше сообщений о пилотных проектах с водородом — и все чаще мелькает химическое обозначение этого газа: H2.

Кто претендует на титул «водородная держава №1»

Так, в Германии сооружается крупнейшая в мире установка по его производству методом электролиза и стартует эксперимент по частичному замещению водородом природного газа в отоплении жилья. Над этим же, над заменой метана на H2 в газопроводной сети, работают и в Великобритании. В Нидерландах и Бельгии собираются протестировать речное судно на водородном топливе и создать для него систему заправки.

Себастьян Курц обещает превратить Австрию в мирового лидера в области водородных технологий

В Австрии три ведущих концерна готовят сразу несколько совместных пилотных проектов, в том числе по использованию водорода вместо угля при производстве стали, а бывший и, вероятно, будущий канцлер, консерватор Себастьян Курц в ходе избирательной кампании выдвигает лозунг превращения своей страны в «водородную державу №1». На эту же роль претендует и Франция. Да и Германия вполне сможет побороться за такой титул.

Пригородные электрички на водороде: лидирует ФРГ

Ведь два пока единственных в мире водородных поезда Coradia iLint эксплуатируются именно в Германии. Более того, они уже успешно отработали свои первые 100 тысяч километров. Это произошло в июле, спустя десять месяцев после начала регулярной перевозки пассажиров по стокилометровому маршруту между городами Бремерхафен, Куксхафен, Букстехуде и Бремерфёрде.

До конца 2021 года на этой не электрифицированной железнодорожной линии на северо-западе страны в федеральной земле Нижняя Саксония собираются полностью отказаться от дизельных локомотивов, заменив их на 14 поездов, вырабатывающих электроэнергию в топливных элементах в ходе химической реакции между водородом и кислородом. Вместо выхлопов получается вода.

Пригородная водородная электричка Coradia iLint эксплуатируется в Германии с сентября 2018 года

Такие же водородные электрички решили использовать и в федеральной земле Гессен. В мае выпускающий их французский концерн Alstom получил заказ объемом в 500 млн евро на 27 поездов, которые с 2022 года планируется использовать для пригородного сообщения с горным массивом Таунус к северо-западу от Франкфурта-на-Майне.

В результате ФРГ станет бесспорным мировым лидером в области водородного железнодорожного транспорта. Тем более, что интерес к инновационным поездам Alstom проявляют и другие федеральные земли. С некоторыми из них, сообщил глава германского филиала концерна Йорг Никутта (Jörg Nikutta) агентству dpa, он ведет сейчас «активные переговоры».

Эксперименты с водородом в газовой сети

Немцев и в целом европейцев водород привлекает, прежде всего, из экологических соображений. При использовании H2 в атмосферу не выделяется углекислый газ CO2, самый большой виновник в парниковом эффекте и глобальном потеплении, так что более широкое внедрение водородных технологий поможет странам ЕС выполнить обязательства, взятые на себя в рамках Парижского соглашения по климату (Германия, к примеру, их пока не выполняет).

Но есть и экономический интерес. Он связан с тем, что использование такого возобновляемого источника энергии, как водород, снижает потребность в ископаемых энергоносителях, чаще всего импортируемых (в том числе из России). Например, в нефти и нефтепродуктах, на которых работают, скажем, дизельные локомотивы в том же Таунусе на не электрифицированных маршрутах.

Впрочем, немецкая компания Avacon, начинающая пилотный проект по примешиванию к природному газу до 20 процентов водорода, в своих заявлениях говорит исключительно о защите климата. Эксперимент призван доказать, что к используемому для отопления газу можно добавлять не до 10 процентов H2, как предписывают действующие нормы, а в два раза больше. В результате сократится выброс CO2, поскольку будет сжигаться меньше углеводородного топлива.

Масштабы эксперимента скромные: он проводится в одном из районов городка Гентхин в восточногерманской земле Саксония-Анхальт. Выбрали это место потому, что имеющаяся здесь газовая инфраструктура по своим техническим характеристикам наиболее типична для всей сети компании Avacon. «Поскольку зеленый газ будет играть все более важную роль, мы хотим переоснастить свою газораспределительную сеть так, чтобы она была приспособлена к приему как можно более высокой доли водорода», — поясняет стратегическую цель эксперимента член правления Avacon Штефан Тенге (Stephan Tenge).

Power to Gas: возобновляемая энергия, электролиз, «зеленый водород«

Под «зеленым газом» он подразумевает «зеленый водород»: так принято называть тот H2, который образуется наряду с кислородом O2 при электролизе обычной воды. Процесс этот технически весьма простой, но очень энергоемкий. Однако если использовать для него излишки электроэнергии, вырабатываемой из возобновляемых источников — ветер и солнце, то получается безвредное для климата топливо, произведенное без выбросов в атмосферу CO2.

НПЗ Shell в Весселинге: здесь будет крупнейшая в мире установка P2G по производству водорода

Собственно, начавшееся уже несколько лет назад распространение в Европе этой технологии, получившей название Power to Gas (P2G), и лежит в основе растущего европейского интереса к водороду. Так, в конце июня британо-нидерландский концерн Shell при финансовой поддержке Евросоюза (ЕС предоставил 10 из 16 млн евро) начал в Германии на территории своего нефтеперерабатывающего завода в Весселинге под Кёльном строительство крупнейшей в мире установки по производству водорода методом электролиза. До сих пор его получают здесь из природного газа.

После ввода в эксплуатацию во второй половине 2020 года мощность установки, сообщает Shell, составит ежегодно 1300 тонн водорода, который будет использоваться главным образом в производственных процессах на самом НПЗ. Но часть пойдет на то, чтобы превратить территорию между Кёльном и Бонном в модельный регион по внедрению H2, в том числе как топлива для автобусов, грузовых и легковых автомобилей, возможно — для судов, ведь Рейн в непосредственной близости.

Будет ли Великобритания отапливаться водородом?

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector