Autoservice-mekona.ru

Автомобильный журнал
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что нужно для того чтобы сделать двигатель стирлинга

Термоакустический двигатель – двигатель Стирлинга без поршней

Двигатель Стирлинга – двигатель с внешним подводом тепла. Внешний подвод тепла – это очень удобно, когда есть необходимость использовать в качестве источника тепла не органические виды топлива. Например, можно использовать солнечную энергию, геотермальную энергию, бросовое тепло с различных предприятий.

Рисунок 1 – Двигатель Стирлинга альфа типа

Посмотрите на двигатель Стирлинга Альфа типа. При вращении вала поршни начинают перегонять газ то из холодного в горячий цилиндр, то наоборот, из горячего в холодный. Но они не просто перегоняют, а ещё и сжимают и расширяют. Совершается термодинамический цикл. Можно мысленно представить на картинке, что когда вал повернётся так, что ось, на которую крепятся шатуны, окажется вверху, то это будет момент наибольшего сжатия газа, а когда внизу, то расширения. Правда это не совсем так из-за тепловых расширений и сжатий газа, но примерно всё же всё это так.

Сердцем двигателя является так называемое ядро, которое состоит из двух теплообменников – горячего и холодного и между ними находится регенератор. Теплообменники обычно делаются пластинчатыми, а регенератор – это чаще всего стопка, набранная из металлической сетки. Зачем нужны теплообменники понятно – нагревать и охлаждать газ, а зачем нужен регенератор? А регенератор – это настоящий тепловой аккумулятор. Когда горячий газ движется в холодную сторону, он нагревает регенератор и регенератор запасает тепловую энергию. Когда газ движется из холодной на горячую сторону, то холодный газ подогревается в регенераторе и таким образом это тепло, которое без регенератора бы безвозвратно ушло на нагрев окружающей среды, спасается. Так что, регенератор – крайне необходимая вещь. Хороший регенератор повышает КПД двигателя примерно в 3,6 раза.

Любителям, которые мечтают построить подобный двигатель самостоятельно, хочу рассказать подробнее про теплообменники. Большинство самодельных двигателей Стирлинга, из тех что я видел, вообще не имеют теплообменников (я про двигатели альфа типа). Теплообменниками являются сами поршни и цилиндры. Один цилиндр нагревается, другой охлаждается. При этом площадь теплообменной поверхности, контактирующей с газом совсем мала. Так что, есть возможность значительно увеличить мощность двигателя, поставив на входе в цилиндры теплообменники. И даже на рисунке 1 пламя направлено прямиком на цилиндр, что в заводских двигателях не совсем так.

Вернёмся к истории развития двигателей Стирлинга. Итак, пускай двигатель во многом хорош, но наличие маслосъёмных колец и подшипников снижало ресурс двигателя и инженеры напряжённо думали, как его улучшить, и придумали.

В 1969 году Вильям Бейл исследовал резонансные эффекты в работе двигателя и позже смог сделать двигатель, для которого не нужны ни шатуны ни коленчатый вал. Синхронизация поршней возникала из-за резонансных эффектов. Этот тип двигателей стал называться свободнопоршневым двигателем (Рисунок 2).

Рисунок 2 – Свободнопоршневой двигатель Стирлинга

На рисунке 2 показан свободнопоршневой двигатель бета типа. Здесь газ переходит из горячей области в холодную, и наоборот, благодаря вытеснителю (который движется свободно), а рабочий поршень совершает полезную работу. Вытеснитель и поршень совершают колебания на спиральных пружинах, которые можно видеть в правой части рисунка. Сложность в том, что их колебания должны быть с одинаковой частотой и с разностью фаз в 90 градусов и всё это благодаря резонансным эффектам. Сделать это довольно трудно.

Таким образом, количество деталей уменьшили, но при этом ужесточились требования к точности расчётов и изготовления. Но надёжность двигателя, несомненно, возросла, особенно в конструкциях, где в качестве вытеснителя и поршня применяются гибкие мембраны. В таком случае в двигателе вообще отсутствуют трущиеся детали. Электроэнергию, при желании, с такого двигателя можно снимать с помощью линейного генератора.

Но и этого инженерам оказалось не достаточно, и они начали искать способы избавиться не просто от трущихся деталей, а вообще от подвижных деталей. И они нашли такой способ.

В семидесятых годах 20-го века Петер Цеперли понял, что синусоидальные колебания давления и скорости газа в двигателе Стирлинга, а также тот факт, что эти колебания находятся в фазе, невероятно сильно напоминают колебания давления и скорости газа в бегущей звуковой волне (рис.3).

Рисунок 3 — График давления и скорости бегущей акустической волны, как функция времени. Показано, что колебания давления и скорости находятся в фазе.

Эта идея пришла Цеперли не случайно, так как до него было множество исследований в области термоакустики, например, ещё сам лорд Рэлей в 1884 качественно описал это явление.

Таким образом, он предложил вообще отказаться от поршней и вытеснителей, и использовать только лишь акустическую волну для контроля над давлением и движением газа. При этом получается двигатель без движущихся частей и теоретически способный достичь КПД цикла Стирлинга, а значит и Карно. В реальности лучшие показатели – 40-50 % от эффективности цикла Карно (Рисунок 4).

Рисунок 4 – Схема термоакустического двигателя с бегущей волной

Можно видеть, что термоакустический двигатель с бегущей волной – это точно такое же ядро, состоящее из теплообменников и регенератора, только вместо поршней и шатунов здесь просто закольцованная труба, которая называется резонатором. Да как же работает этот двигатель, если в нём нет никаких движущихся частей? Как это возможно?

Для начала ответим на вопрос, откуда там берётся звук? И ответ – он возникает сам собой при возникновении достаточной для этого разницы температур между двумя теплообменниками. Градиент температуры в регенераторе позволяет усилить звуковые колебания, но только определённой длины волны, равной длине резонатора. С самого начала процесс выглядит так: при нагреве горячего теплообменника возникают микро шорохи, возможно даже потрескивания от тепловых деформаций, это неизбежно. Эти шорохи – это шум, имеющий широкий спектр частот. Из всего этого богатого спектра звуковых частот, двигатель начинает усиливать то звуковое колебание, длина волны которого, равна длине трубы – резонатора. И неважно насколько мало начальное колебание, оно будет усилено до максимально возможной величины. Максимальная громкость звука внутри двигателя наступает тогда, когда мощность усиления звука с помощью теплообменников равна мощности потерь, то есть мощности затухания звуковых колебаний. И эта максимальная величина порой достигает огромных величин в 160 дБ. Так что внутри подобного двигателя действительно громко. К счастью, звук наружу выйти не может, так как резонатор герметичен и по этому, стоя рядом с работающим двигателем, его еле слышно.

Усиление определённой частоты звука происходит благодаря всё тому же термодинамическому циклу – циклу Стирлинга, который осуществляется в регенераторе.


Рисунок 5 – Стадии цикла грубо и упрощённо.

Как я уже писал, в термоакустическом двигателе вообще нет движущихся частей, он генерирует только акустическую волну внутри себя, но, к сожалению, без движущихся частей снять с двигателя электроэнергию невозможно.

Обычно добывают энергию из термоакустических двигателей с помощью линейных генераторов. Упругая мембрана колеблется под напором звуковой волны высокой интенсивности. Внутри медной катушки с сердечником, вибрируют закрепленные на мембране магниты. Вырабатывается электроэнергия.

Читать еще:  Как установить двигатель от мотоблока на муравья

В 2014 году Kees de Blok, Pawel Owczarek и Maurice Francois из предприятия Aster Thermoacoustics показали, что для преобразования энергии звуковой волны в электроэнергию, годится двунаправленная импульсная турбина, подключенная к генератору [3].


Рисунок 6 – Схема импульсной турбины

Импульсная турбина крутится в одну и ту же сторону вне зависимости от направления потока. На рисунке 6 схематично изображены лопатки статора по бокам и лопатки ротора посередине.
А так турбина выглядит у них в реальности:


Рисунок 7 – Внешний вид двунаправленной импульсной турбины

Ожидается, что применение турбины вместо линейного генератора сильно удешевит конструкцию и позволит увеличить мощность устройства вплоть до мощностей типичных ТЭЦ, что невозможно с линейными генераторами.

Так же, я разрабатываю собственный термоакустический двигатель, подробнее о котором можно узнать в этой статье:«Создание и запуск термоакустического двигателя»

Список использованных источников

[1] М.Г. Круглов. Двигатели Стирлинга. Москва «Машиностроение», 1977.
[2] Г. Ридер, Ч. Хупер. Двигатели Стирлинга. Москва «Мир», 1986.
[3] Kees de Blok, Pawel Owczarek. Acoustic to electric power conversion, 2014.

Что такое двигатель Стирлинга и как его сделать своими руками

Дата публикации: 12 ноября 2019

  • Конструкция двигателя Стирлинга
  • Как работает двигатель Стирлинга
  • Как сделать самостоятельно

В 1816 году преподобный Роберт Стирлинг, стремившийся создать более безопасную альтернативу паровым двигателям, котлы которых часто взрывались из-за высокого давления пара и доступных в то время примитивных материалов, изобрёл новое устройство. Как и другие похожие агрегаты, двигатель Стирлинга преобразует тепловую энергию в механическую. Его существенная особенность заключаются в том, что это разновидность двигателя внешнего сгорания. Это значит, что в нём используется фиксированное количество рабочего тела, обычно воздуха, а тепло, потребляемое им, подводится извне. Это позволяет устройству работать практически на любом источнике тепла, включая ископаемое топливо, горячий воздух, солнечную, химическую и ядерную энергию. Он также может работать с очень низкими температурными перепадами.

Конструкция двигателя Стирлинга

Агрегаты бывают разных форм, большинство из которых — варианты четырёх базовых конфигураций, главные их части следующие:

  1. Источник тепла. Он может быть любой: от огня, производимого горящим углем или дровами, до солнечной света, концентрируемого гелиостатами, поскольку фактическое сгорание топлива не нужно, используется только разница температур между радиатором и источником тепла.
  2. Газ, или рабочее тело, постоянно находится в закрытом баллоне внутри машины. Это может быть гелий, обычных воздух, водород, а также любое другое доступное вещество, которое не меняет своей формы при нагреве и охлаждении. Его основная задача — передать тепловую энергию.
  3. Радиатор. Нужен для охлаждения горячего газа.
  4. Поршни и цилиндры, между которыми движутся газовые заслонки, которые при нагреве расширяются, а при охлаждении сжимаются перед тем, как весь цикл повторится.
  5. Теплообменник, или регенератор. Расположен между радиатором и тепловым источником. Нагретый газ, проходя мимо, отдаёт часть своего тепла, а возвращаясь забирает его. Без этого узла тепло будет уходить, то есть тратиться впустую.

Как работает двигатель Стирлинга

Если рассматривать рабочую схему двигателя Стирлинга на примере альфа-конфигурации, где фиксированное количество воздуха или другого рабочего тела заключено в два цилиндра, один из которых горячий, а другой — холодный, перемещается между ними вперёд и назад. Газ нагревается и расширяется в горячем цилиндре, охлаждается в холодном, там же он сжимается, по ходу отдавая энергию для выполнения механической работы.

Надо отметить, что два поршня соединены с коленчатым валом, но их движения не совпадают по фазе на 90 ° между верхней и нижней частями. Поэтапно это выглядит следующим образом:

  1. Рабочее тело, расширяясь от нагрева, толкает горячий поршень к нижней части цилиндра, поворачивая коленчатый вал. Расширение продолжается, заставляя газ двигаться к холодному цилиндру. Поршень внутри холодного цилиндра, который находится на четверть оборота позади горячего поршня, также толкается вниз.
  2. Газ в максимальном объёме. Импульс маховика на коленчатом валу толкает поршень в горячем цилиндре к вершине его хода, заставляя большую часть газа попадать в холодный цилиндр, толкая холодный поршень вниз. В холодном цилиндре газ охлаждается, давление падает.
  3. Когда горячий поршень достигает вершины своего хода, почти весь газ теперь переместился в холодный цилиндр, где охлаждение продолжается, и рабочее тело сжимается, снижая давление ещё больше, что позволяет холодному поршню подняться. Сила импульса маховика сжимает газ и направляет его обратно к горячему цилиндру.
  4. На этом этапе рабочая жидкость, достигая своего минимального объема, подаётся в горячий цилиндр, где начинает толкать горячий поршень вниз. Газ снова нагревается, его давление увеличивается, он расширяется, толкая горячий поршень вниз во время рабочего хода, и цикл начинается снова.

Регенератор, расположенный в воздушном канале между двумя поршнями, не строго необходим в конструкции двигателя Стирлинга, но служит для повышения эффективности двигателя. Обычно это металлическая или керамическая матрица с большой площадью поверхности, способная поглощать или отдавать тепло. С ее помощью можно снизить расход топлива и повысить общую эффективность рабочего цикла. Канал для переноса газа между двумя цилиндрами по существу мертвое пространство, часто он остается максимально коротким.

Двигатели Стирлинга использовались в различных формах с 1930-х годов в качестве движущей силы для целого ряда транспортных средств с двигателями мощностью 75 кВт и более. Несмотря на то, что ранние разработки были предназначены для автомобильной промышленности, из-за своей низкой удельной мощности двигатель Stirling больше подходит для стационарного применения, а в последние годы его стали больше использовать для производства электрической энергии:

  1. Идеально подходит для использования небольшими комбинированными теплоэнергетическими установками для сбора отработанного тепла. Генераторы двигателя Стирлинга с выходной электрической мощностью от 1 кВт до 10 кВт доступны для бытового применения, а отработанное тепло используется котлом центрального отопления. Общая тепловая эффективность этих установок может достигать 80%.
  2. В некоторых странах такие устройства используются для выработки электроэнергии из тепловой энергии.

Как сделать самостоятельно

Несмотря на кажущуюся простоту, сделать двигатель Стирлинга своими руками в домашних условиях непросто. На это нужно потратить немного времени, уделяя внимание деталям. Никакие станки не потребуются. Вот несколько советов для тех, кто решился на эксперимент.

  1. Создание цилиндра. Можно использовать ёмкость из нержавеющей стали, диаметр которой около 95 мм, а высота 235 мм. Этот материал выдерживает сильный нагрев. Не стоит заменять его на алюминиевую банку. Для изготовления диафрагмы подойдёт пластиковая крышка.
  2. Охладители. Подойдут нескольких жестяных банок диаметром 150 мм. Чтобы сделать водовыпускное отверстие, можно использовать сантехнические детали.
  3. Поршень. Его легко изготовить из проволоки. Понадобится вата, выполненная из нержавеющей стали, которую нужно намотать на сетку из того же материала.
  4. Коленчатый вал — самое сложное. Он должен быть прямым с жесткими изгибами. Нужны подшипники, латунные соединители и 4-миллиметровая стальная катанка.
  5. Маховик. Стальной круг 4 мм толщиной и 170 мм в диаметре, который нужно навинтить на коленчатый вал.
  6. Диафрагма. Понадобится отрезок тонкой резины, её нужно растянуть и нагреть, чтобы придать форму. Как шаблон подойдёт выпуклая пластиковая крышка.
  7. Статор. Содержит примерно одинаковые катушки из медной проволоки. Затем их нужно приклеить к фанерному диску, который будет привинчен к боковой части двигателя.
Читать еще:  Что будет если проехала без масла в двигателе

Когда катушки будут готовы, стоит проверить, что у всех одинаковое сопротивление, а провод без разрывов.

Двигатель стирлинга своими руками

Всем известный двигатель Стирлинга можно создать самостоятельно из подручных материалов. Любой источник тепла в этой конструкции способен дать вам на выходе из устройства энергию.

Для изготовления двигателя Стирлинга своими руками понадобятся:

пластиковый холдер из-под CD-дисков;

лист алюминия размером 25 х 13 см;

медная труба ¾ дюйма;

термопистолет и горячий клей;

ножевка по металлу;

  • циркуль.
  • Шаг 1. От CD-холдера необходимо отрезать часть конструкции. В итоге должна получиться окружность без дна и верха с ровными краями. Высота – около 4 см.

    Шаг 2. Циркулем замеряйте диаметр получившейся окружности. Перенесите его на пенопласт. Сделайте два круга. Обязательно отметьте центр. Круги отшлифуйте лобзиком. Склейте их. Для четкого попадания в окружность проклейте внешний край клейкой лентой.

    Шаг 3. Круги, диаметром с окружность CD-холдера вырежьте из алюминиевых листов. Их должно быть два.

    Шаг 4. Ровно посредине верхнего алюминиевого листа просверлите отверстие, в которое будет входить проволока. Чтобы проволока двигалась прямо, как это необходимо нам, приварите кусочек угловой трубы, так как это показано на фото. В его верхней шляпке сделайте еще одно отверстие для проволоки. Возьмите саму проволоку, которая будет держать поршень, проверьте, чтобы она могла двигаться через эти отверстия, но при этом герметичность также имела место быть.

    Ближе к краю верхней крышки просверлите еще одно отверстие диаметром равное кусочку имеющейся металлической трубы.

    Шаг 5. Теперь необходимо сделать поршень. Для этого, возьмите кусок металлической трубы, который потом и войдет в данную конструкцию. Промойте ее и поставьте на крышку, застеленную кусочком полиэтиленового пакета. Изнутри смажьте трубку и сам пакет маслом. После этого залейте в получившуюся форму, подогретую эпоксидную смолу. Она должна быть теплой, не горячей. По мере ее застывания с силой поучившийся поршень вам придется вытолкнуть. Из проволоки сформируйте крючок. Просверлите в куске эпоксидной смолы отверстие и вставьте в него эту проволоку. Поршень готов.

    Шаг 6. Часть конструкции нужно собрать. Дно конструкции приклейте при помощи горячего клея. Также сделайте еще несколько крючков из проволоки. Крючок, который будет располагаться посередине всей конструкции, обрежьте. Концы крючков заделайте эпоксидной смолой.

    Шаг 7. Закрепите на алюминиевом верхнем листе трубу. Смажьте ее, вставьте поршень. Сделайте макет двигающей части конструкции. Для этого просто приложите бумагу и сделайте основные разметки. По нарисованному макету загните проволоку.

    Шаг 8. В крючках просверлите отверстие, размером немного больше основной проволоки.

    Шаг 9. ПВХ трубу разрежьте пополам прикрепите к алюминиевому основанию горячим клеем. В трубе сделайте отверстия, в которые вы и ставите проволочный коленчатый вал. На другой конец вала прикрепите крышку от пластиковой банки или компакт-диск. Они должны вращаться.

    Шаг 10. Проверьте работоспособность механизма. Подгоните все детали. При необходимости смажьте движущиеся части механизма. Правильно собранный двигатель должен приходить в движение от нагревания воздуха. Последний, расширяясь от горячих температур, выталкивает поршень, который и приводит в движение сам двигатель.

    Ижевский государственный технический университет имени М.Т. Калашникова

    В свободное от работы время Алберт занимается наукой, а именно работой по созданию многотопливного двигателя с внешним подводом тепла, способного работать, в том числе, и на твёрдом топливе. Свой проект он представил в финале конкурса по программе «УМНИК» и выиграл грант в размере 400 тыс. рублей.

    В нашей беседе он рассказал немного о себе и чуть больше – о своей разработке. Альберт приехал в Ижевск из Ростовской области, собирается перебираться сюда на постоянное место жительства.

    — Как тебя занесло в Ижевск?

    — Ижевск мне понравился как промышленный город, где я увидел для себя перспективы. Когда я, будучи выпускником школы в 2005 году, гостил у близкого друга моего отца, его сын учился в ИжГТУ. Вуз мне понравился, и я решил попробовать свои силы, ведь «попытка – не пытка».

    Всегда хотел быть инженером-конструктором автомобилей. Я интересовался автомобилями с детства: начиная с проектирования маленьких машинок, заканчивая походами на картинги, состоял также в Клубе юных техников в родном городе Сальске Ростовской области. К сожалению, у нас нет вузов, готовящих конструкторов в области автомобилестроения.

    В Ижевске мне удалось исполнить свою первую мечту – в 2010 году я получил диплом инженера-конструктора. Научный руководитель, доктор технических наук, профессор Николай Михайлович Филькин предложил мне остаться в университете — поступить в аспирантуру, заведующий кафедрой, к.т.н., профессор Раис Салихович Музафаров предложил мне должность лаборанта. У меня была небольшая зарплата, но зато был доступ к лабораториям, где имелось оборудование, также удалось наладить связь с лабораториями соседних кафедр. Это позволило мне начать практическую реализацию своей идеи. Пока я этим занимался, три года аспирантуры пролетели незаметно. Судя по всему, я не успею вовремя защититься. Как только доведу до ума диссертацию, буду защищаться.

    — С чего всё началось?

    — Теоретическую проработку я начал на третьем курсе (в 2007 году). Изначально это была просто модернизация обычного двигателя внутреннего сгорания (ДВС). Чтобы объяснить, что такое ДВС, достаточно вспомнить про «сердце» автомобиля. В ДВС топливо сгорает непосредственно в рабочей камере (внутри). Классические варианты использования «внешников» на транспорте – паровоз и пароход.

    Когда пришел к альтернативным видам источников энергии, продолжает Альберт, — понял, что нужен двигатель с внешним подводом тепла. Начал просто работать над модернизацией парового двигателя, потом перешел на двигатель Стирлинга, в итоге понял, что нужно что-то принципиально иное, объединяющее преимущества обоих двигателей.

    Свой двигатель я начал создавать с первых эскизов около четырёх лет назад, но лишь в последние полгода появилась возможность купить многие измерительные приборы. Если все остальное я мог достать и сделать из подручных материалов, то измерительные приборы достаточно дорогие – та же трубопроводная арматура с манометрами и термометрами. Основной проблемой пока остается недостаток специализированных площадей и измерительного оборудования, плюс финансовые моменты.

    В принципе, на данном этапе осталось завершить эксперименты. Для этого необходимо закупить некоторое измерительное оборудование – на сумму порядка 15-20 тысяч. Думаю, к концу года я бы смог показать характеристики и утвердиться в своих расчётах. Если мои формулы подтвердятся, буду выходить на промышленный образец. Это будет что-то лёгкое, компактное с высокой энергоэффективностью с использованием современных материалов – сплавов на основе алюминия и принципиально нового вида теплообменников. Для выхода на промышленный образец мне понадобится минимум год и большие финансовые вложения. Без последнего – процесс растянется на годы.

    Читать еще:  В уазе двигателе стук что это может быть

    — То есть ты создал двигатель нового поколения?

    — Не то чтобы нового… Но очень перспективный. Существующие альтернативы — паровой двигатель и двигатель Стирлинга, имеют ряд недостатков: паровой двигатель — низкий коэффициент полезного действия (КПД), двигатель Стирлинга дорог в использовании, имеет очень большую рабочую температуру и, соответственно, требует жаропрочных материалов. Последний сопровождает много технологических проблем, значительно снижающих срок и удобство эксплуатации.

    Моя разработка представляет из себя некий гибрид. Здесь то же объёмное расширение, только имеется жидкая фаза как у парового двигателя, т.е. мы получаем пар, он расширяется в объёме и получается какая-то мощность – преобразование тепловой энергии в механическую. Здесь я получил двустороннее преимущество: низкую температуру работы и дешевизну, достаточно высокий коэффициент полезного действия. Согласно расчетам на стенде, мы ожидаем КПД минимум 18%. Т.к. конструкция имеет закрытый цикл, а в системе будет применено специальное «ноу-хау», так что КПД можно довести до уровня современных дизельных двигателей.

    — Насколько перспективна твоя разработка?

    Моя разработка сможет работать от любого источника тепла, может использоваться в качестве многотопливного двигателя для любой мобильной машины в прямом понимании, и как генератор в том числе. Почему не рассматриваем ДВС, для того, чтобы будущий двигатель смог работать на твердом топливе, таком как щепа или топливные пеллеты. Для этого потребуется очень много конструктивных преобразований, после которых он станет очень громоздким с низким КПД. В дальнейшем вместо роторного двигателя планируем использовать турбину для получения большего ресурса. Если техника сможет работать на твердом топливе, у неё будет очень большой экономический эффект. Вообще это большая перспектива не только с точки зрения экономики, мы смотрим и в будущее – нефть же может закончиться.

    — А теперь расскажи, как работает твой двигатель

    См. фото: «Стенд для оптимизации двигателя с внешним подводом тепла».

    — Главной проблемой в работе двигателя с внешним подводом тепла заключается в оптимизации параметров рабочего тела. Основная конструкция состоит из роторного двигателя, питательного насоса, теплообменника-парогенератора, конденсатора, и системы контроля и регулировки.

    В теплообменнике происходит нагрев рабочего тела. Само собой, для получения требуемой мощности, нагрев должен достигать определенной температуры и давления. Этот процесс реализуется при помощи изменения температуры и давления на «входе» и «выходе». Эти параметры и надо оптимизировать. Чтобы сделать это, необходимо знать зависимость температуры и давления от момента на валу. Для этого нужны датчики, система циркуляции и подвода тепла, для нагрева до определенной температуры, вспомогательные приборы для обеспечения циркуляции и охлаждения, и, самое главное, – это измерительные приборы и регулировка. На основе данных от этого стенда я получил кривую изменения мощности, кривую изменения вращающего момента и зависимость температуры и давления от входной мощности. Полученные экспериментальные данные позволят оптимизировать рабочие параметры и создать методику расчёта двигателя.

    Двигатель предназначен для работы от любого источника тепла — хоть к горячему водопроводу подключи. Я специально старался сделать его низкотемпературным. Его рабочая температура от 60⁰С до 100⁰С в данной конструкции. Это конструктивное решение позволит получить прирост мощности обычного автомобиля, если присоединить данный двигатель к системе охлаждения стандартного ДВС. Но главная перспектива — в возобновляемых источниках энергии (ВИЭ), таких как топливные пеллеты (или евродрова).

    — В чем их преимущество?

    — У них очень малая зольность, большая теплотворная способность и экологичность в сравнении с обычным топливом. Вдобавок, повторюсь, — это ВИЭ. В Европе, к примеру выращивают специальные растения, которые потом обрабатывают и переделывают в пеллеты. В нашем случае всё на много проще. В Удмуртии, скапливается очень много «отходов» производства: солома, жмых, щепа, опил, горбыль, т.е. различные пиломатериалы и отходы сельского хозяйства. Всё это сейчас прессуют в пеллеты и используют в качестве альтернативы дровам. Отсюда самый главный плюс — это дешевизна.

    — А что будет на «выходе»?

    — Зола и чистый пар. Если сравнивать с обычной печкой, то это печка, которая работает на пеллетах. Т.е. зола в виде трухи и пыли, её можно в огород или на поле, хоть куда – для окружающей среды, как обычная дровяная зола, является удобрением.

    — А как быть с паром?

    — Парниковый эффект образуется как раз из-за недогоревших углеводородов. Получается «чистое горение»: при невысоких температурах, без избыточного давления и без запаха. Максимум – запах костра при запуске. Процесс горения будет напоминать работу обычного газового котла или камина на пеллетах. Единственное, чего я боюсь, что «умные» умы начнут в промышленных масштабах резать наш лес только для того, чтобы его потом сжечь. Надеюсь, что этот двигатель войдет в жизнь в качестве альтернативы и займет свою нишу, но не станет «основным» как ДВС, – иначе весь лес сожгут.

    — У крупных предприятий есть интерес?

    — Рынок я, разумеется, исследовал. Очень много предложений по топливным пеллетам. По теплотворной способности одну тонну пеллет примерно можно прировнять к тонне бензина, но за тонну бензина вы отдадите более 30 тыс. рублей, а за тонну пеллет – порядка 5-7 тыс. рублей – экономическая составляющая видна невооруженным взглядом. Пусть КПД будет ниже, чем у дизельного двигателя или бензинового. Но это уже вопрос другой, решаемый при помощи экспериментов. Далее – экологичность. Желающих употреблять пеллеты – тоже много: есть автономные котлы с автоматами загрузки. Не хватает только двигателя, который это потребляет. Не только Россия, но и весь мир нуждается в этом.Особенно это перспективно для тех стран, у которых нет нефти, жидкого или газообразного топлива, но есть твёрдое. Например, Канада – у них есть большие запасы древесины, или та же Белоруссия, поскольку и мощностей у них хватает, и трактора производят, да и с нефтью проблемы.

    — Не боишься за то, что в России не примут разработку – у нас же есть нефть?

    — Да, от нефти и газа мы очень сильно зависим. Но я являюсь патриотом своей страны, поэтому постараюсь для России, в первую очередь для военной и сельскохозяйственной техники. Военные будут заинтересованы иметь многотопливный двигатель, в который, на крайний случай, можно и угля насыпать. Для военной техники самое главное, чтобы подручным кормом «питался» тот же самый танк, у которого вспомогательный генератор или основной двигатель работал бы по такому принципу. В крайнем случае, заливаешь любое топливо – вплоть до отработанного масла, солярки, дизельного мазута – всего, «что горит».

    Ссылка на основную публикацию
    ВсеИнструменты
    Adblock
    detector