Autoservice-mekona.ru

Автомобильный журнал
13 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Будет ли работать трехфазный двигатель без одной фазы

Защита двигателя 380 В от работы на двух фазах

Работа двигателей на двух фазах довольно частое явление. Очень часто причиной работы двигателей на двух фазах является низкая культура эксплуатации электроустановок. Это и не своевременный уход за контактами коммутационных аппаратов и предохранителей, и не своевременная проверка контактных соединений проводов и кабелей на распределительных щитах, пунктах и в шкафах управления и т.д.

Если же повысить культуру эксплуатации электроустановок, то вероятность обрыва цепи в одной фазе из-за плохого контакта будет сведена к минимуму.

Очень часто двигатель может работать на двух фазах, когда силовая цепь двигателя защищается предохранителями, из-за сгорания плавкой вставки в одной фазе в результате короткого замыкания на землю в сети с заземленной нейтралью. Замена предохранителей на автоматические выключатели устраняет саму возможность двухфазного режима.

Для чего же нужна данная защита и чем опасна работа двигателя на двух фазах, сейчас и попытаемся разобраться.

Данная защита защищает двигатель от перегрева, а также от так называемого «опрокидывания», т. е. остановки под током вследствие снижения момента, развиваемого двигателем, при обрыве одной из фаз. Защита действует на отключение и в качестве аппаратов защиты применяются как тепловые, так и электромагнитные реле.

Когда происходит обрыв одной из фаз, ток двигателя с соединением обмоток статора в звезду будет превышать в 1,7-2 раза по сравнению с трехфазным режимом.

Рассмотрим например как отразится обрыв одной из фаз на различных величинах напряжения между различными точками цепи статора двигателя.

Предположим, что двигатель подключен к сети с номинальным линейным напряжением Uл, обмотки статора соединены в звезду и обрыв провода произошел в фазе «А» (рис.1 а).

Рис.1 – Напряжения при работе двигателя на двух фазах

Нас будут интересовать следующие напряжения:

  • UАВ, UВС, UСА – между фазами двигателя;
  • UАО, UВО, UСО – между фазами и нулевой точкой О сети (землей);
  • UО1-О – между нулевой точкой обмотки двигателя и землей; Uразр. — в месте разрыва.

В трехфазном режиме напряжения на двигателе симметричны, т. е. UАВ = UВС= UСА= Uл, UАО= UВО= UСО= Uл/√3= Uф, при этом UО1-О= Uразр.=0.

В двухфазном режиме напряжения становятся несимметричными, степень несимметрии будет зависеть от скольжения s. Если обрыв фазы имел место при холостом ходе двигателя, когда Sxx Защита двигателя 380 В от работы на двух фазах, обрыв в цепи в одной фазе, обрыв одной из фаз, обрыв фазы, работа двигателя на двух фазах

Поделиться в социальных сетях

Если вы нашли ответ на свой вопрос и у вас есть желание отблагодарить автора статьи за его труд, можете воспользоваться платформой для перевода средств «WebMoney Funding» и «PayPal» .

Данный проект поддерживается и развивается исключительно на средства от добровольных пожертвований.

Проявив лояльность к сайту, Вы можете перечислить любую сумму денег, тем самым вы поможете улучшить данный сайт, повысить регулярность появления новых интересных статей и оплатить регулярные расходы, такие как: оплата хостинга, доменного имени, SSL-сертификата, зарплата нашим авторам.

Дуговая защита (ДГЗ) рассматривается как дополнительная к релейной защите, поскольку работает на.

В данной статье речь пойдет об основных принципах релейной защиты. Устройство релейной защиты в общем.

В соответствии с ПУЭ 7-издание пункт 3.2.53 должна предусматриваться газовая защита: на трансформаторах.

В данной статье речь пойдет о типовых схемах соединений обмоток трансформаторов тока (ТТ) и реле. В.

В данной статье речь пойдет о последовательном и параллельном соединении проводников. На примерах будут.

Отправляя сообщение, Вы разрешаете сбор и обработку персональных данных.
Политика конфиденциальности.

Читать еще:  Хонда одиссей датчик температуры двигателя где находится

Почему в сети только 1 или 3 фазы, а не 2 или 4?

Вы никогда не задумывались, почему подключение к электросети бывает однофазным и трехфазным? Почему не используют две или четыре? На самом деле все просто.

Взглянув в электрощиток или на опору, стоящую рядом с вашим домом, вы скорее всего увидите 2 или 4 провода, приходящие к вам, которые являются фазой и нулем или тремя фазами и нулем. Почему к нам чаще всего приходит именно такое количество фаз, а не 2, 4 или, например, 5? Ответ электрика в нашей статье.

Почему не хватает одной фазы?

На самом деле варианты и с двумя фазами тоже встречаются, но это довольно редкое явление. Как правило, это потребители, которые были подключены в конце девяностых – начале двухтысячных, когда появлялись мощные потребители и одной фазы сечением 1,5 мм 2 уже не хватало. Однако чаще мы все же встречаем 1 или 3 фазы. Одной фазы вполне хватает для работы большинства электроприборов (при достаточном сечении проводки). Для проведения трех фаз есть несколько причин.

Первая заключается в необходимости запитать трехфазные потребители, например, электрический котел отопления. Соответственно в этом случае ставится трехфазный счетчик (не путать с многотарифным), общий вводной автомат и несколько линейных автоматов.

Вторая причина такая же, как и в случае с двумя фазами — возможность разгрузить фазы при наличии большого количества мощных однофазных потребителей. В особенности это необходимо, когда есть сварочный аппарат. Или же нужно подключить на отдельную фазу варочную панель, водонагреватель или систему «теплый пол». Благодаря такому четкому распределению нет перекоса фаз и напряжение на каждой примерно одинаковое и в пределах нормы.

Почему не 4, 5 или больше фаз?

Тут ответ кроется в экономической целесообразности. В России подавляющее количество электроэнергии тратится на работу трехфазных двигателей. Для создания вращающегося электромагнитного поля необходимо минимум 3 фазы, каждая из которых смещается относительно другой на 120° (см. рис. ниже). При наличии трех фаз двигатель будет нормально и стабильно работать.

В теории можно подключить и 4 фазы, что кстати даст возможность двигателю работать «ровнее». Но для работы четвертой фазы необходимо будет вести дополнительный провод, что в масштабе страны составляет миллионы тонн цветного металла, дополнительные изоляторы, усиленные опоры и т.д. Все это несет колоссальные затраты, которые по факту не оправданы. Так что в этом случае три фазы — это «золотая середина».

Итак, три фазы НЕОБХОДИМЫ для работы трехфазных двигателей, а четыре, пять или больше — это лишняя трата денег.

Интересное из мира электрики:

В чем опасность пропадания одной фазы для трехфазного двигателя

Современное производство неразрывно связано с применением трехфазных асинхронных электродвигателей, питаемых от трехфазной электрической сети 380 В, 50 Гц. Это простой и наиболее доступный способ получения крутящего момента для любого технологического оборудования, правда, особенностью трехфазных асинхронных двигателей является высокая критичность к ситуациям, когда происходят обрывы фаз.

Причинами пропадания фазы могут быть:

  • элементарный обрыв одного из фазных проводов;
  • перегорание плавкого предохранителя;
  • выход из строя контактной группы пускателя схемы включения.

Но по каким бы причинам не происходило исчезновение одной из фаз, трехфазный двигатель переходит в однофазный режим работы.

Нештатная ситуация может происходить при разных эксплуатационных условиях:

  • фаза может исчезнуть при отключенном двигателе или в момент вращения ротора;
  • двигатель может работать в недогруженном состоянии или на полную мощность;
  • электродвигатель может быть подключен по схеме «звезда» или «треугольник».

Рассмотрим, что происходит при этом в работе трехфазных электродвигателей и чем это может для них обернуться.

Чем грозит пропадание фазы?

В нормальном трехфазном режиме во всех трех обмотках статора текут фазные токи, одинаковые по значению, но сдвинутые относительно друг друга на 120°, это создает вращающееся магнитное поле, обеспечивающее вращение ротора. В случае обрыва одной из фаз сбалансированная система нарушается и происходит перераспределение токов и напряжений, при этом в случае соединения «звездой» две обмотки оказываются включенными последовательно и по ним протекает общий ток, в третьей обмотке ток отсутствует.

Читать еще:  Газель 406 двигатель карбюратор не заводится искра есть

Магнитное поле в такой ситуации просто меняет свой знак чего для запуска электродвигателя недостаточно, такое возможно в случае подключения трехфазных двигателей «звездой» с нулевой точкой, присоединенной к нейтрали, однако успех запуска будет зависеть от величины нагрузки. Если нагрузка не обеспечивает вращения вала, это приводит к быстрому перегреву обмоток статоров за счет возрастающих пусковых токов, разрушению изоляции и выходу трехфазных двигателей из строя.

Не меньшую опасность двигателю несет отключение фазы в момент работы электродвигателя. Не зависимо от схемы подключения асинхронного двигателя в однофазном режиме ему обычно хватает крутящего момента для продолжения работы, правда в отличие от режима с трехфазным питанием скорость вращения на валу двигателя несколько падает, а его работа сопровождается характерным гулом. Работа двигателя в таком режиме часто остается незамеченной малоопытным персоналом, а продолжительный нагрев работающих обмоток приводит к их перегреву с последующей поломкой электромотора.

Асинхронный электродвигатель один из самых надежных представителей электрооборудования, при соответствующем обращении сохраняющий свою работоспособность десятилетиями, хотя неумолимая статистика показывает, что от случайной потери одной из фаз гибнет более половины электромоторов. Для защиты асинхронных двигателей от подобных неприятностей разработаны различные схемы подключения, обеспечивающие отключения электродвигателя в аварийных ситуациях.

Тепловая защита электродвигателя инерционна и не всегда успевает сработать при токовых перегрузках, более эффективны многочисленные схемы релейной защиты, которые срабатывают практически мгновенно при исчезновении одной из фаз. Как правило, контакты реле размыкают цепи питания магнитных пускателей, а контакты магнитных пускателей разрывают цепь питания двигателя. Надежную защиту обеспечивает применение реле контроля фаз.

9 основных неисправностей электродвигателя

В этом обзоре мы рассмотрим типичные неисправности трехфазных асинхронных электродвигателей и способы их предупреждения и устранения.

Электрические неисправности электродвигателя

Электрические неисправности двигателя всегда связаны с обмоткой.

  1. Межвитковое замыкание может возникнуть при ухудшении изоляции в пределах одной обмотки. Возможные причины: перегрев обмотки, некачественная изоляция, износ изоляции вследствие вибрации. Определить межвитковое замыкание бывает сложно. Основной метод диагностики – сравнение сопротивления и рабочего тока всех трех обмоток. Первые симптомы межвиткового замыкания – повышенный нагрев двигателя и падение момента на валу. При этом по одной из фаз ток больше, чем по двум другим.
  2. Замыкание между обмотками происходит из-за смещения обмоток, механической вибрации и ударов. При отсутствии должной электрической защиты может возникнуть короткое замыкание и пожар.
  3. Замыкание обмотки на корпус. При данной неисправности электродвигатель может продолжать работать, если неправильно выполнены заземление и защита от короткого замыкания. Однако в работе он будет смертельно опасен, так как его потенциал будет находиться под фазным напряжением.
  4. Обрыв обмотки. Эта неисправность равносильна пропаданию фазы. Если обрыв происходит в работе, то двигатель резко теряет мощность и начинает перегреваться. При правильно выполненной защите двигатель отключится, поскольку ток по другим фазам будет повышен.

Для устранения большинства из этих поломок требуется перемотка двигателя.

Механические неисправности электродвигателя

Механические неисправности электродвигателя связаны с его конструкцией.

  1. Износ и трение в подшипниках. Проявляется в повышении механической вибрации и шума при работе. В этом случае требуется замена подшипников, иначе неисправность приведет к перегреву и падению производительности двигателя.
  2. Проворачивание ротора на валу. Ротор может вращаться в магнитном поле статора, а вал будет неподвижен. Требуется механическая фиксация ротора на валу.
  3. Зацепление ротора за статор. Эта проблема связана с механической поломкой подшипников, их посадочных мест или корпуса двигателя. Кроме того, подобная неисправность приводит к повреждению обмотки статора. Практически не подлежит ремонту.
  4. Повреждение корпуса двигателя. Может происходить из-за ударов, повышенных нагрузок, неправильного крепления или низкого качества двигателя. Ремонт является трудоемким из-за трудностей соосной установки переднего и заднего подшипников.
  5. Проворачивание или повреждение крыльчатки обдува. Несмотря на то, что двигатель продолжит работать, он будет перегреваться, что существенно сократит срок его службы. Крыльчатку необходимо закрепить (для этого используется шпонка или стопорное кольцо) или заменить.
Читать еще:  Влияет ли егр на запуск дизельного двигателя

Аварийные ситуации при работе электродвигателя

Существуют неисправности, не связанные непосредственно с двигателем, но влияющие на его работу, характеристики и срок службы. Большинство этих неисправностей вызваны механической перегрузкой, увеличением тока, и, как следствие, перегревом обмоток и корпуса.

  1. Увеличение нагрузки на валу вследствие заклинивания привода либо приводимых механизмов.
  2. Перекос напряжения питания, который может быть вызван проблемами питающей сети либо внутренними проблемами привода.
  3. Пропадание фазы, которое может произойти на любом участке питания двигателя – от питающей трансформаторной подстанции до обмотки двигателя.
  4. Проблема с обдувом (охлаждением). Может возникнуть из-за повреждения крыльчатки двигателя при собственном охлаждении, из-за останова вентилятора внешнего принудительного охлаждения или вследствие значительного повышения температуры окружающей среды.

Способы защиты электродвигателя

Для защиты электродвигателя от внутренних и внешних неисправностей, а также для минимизации дальнейших трудозатрат по его ремонту применяют различные устройства.

1. Мотор-автоматы и тепловые реле

Мотор-автоматы (автоматы защиты двигателя) и тепловые реле используют для обнаружения превышения тока по одной или всем фазам двигателя. В случае превышения через некоторое время происходит отключение привода.

В отличие от мотор-автомата, у теплового реле нет силовой коммутации. Оно имеет только управляющий контакт, который размыкает питание силовой цепи. Мотор-автомат является самостоятельным коммутационным устройством, способным выключать двигатель.

Минус теплового реле заключается в отсутствии защиты от короткого замыкания. Мотор-автомат имеет защиту от перегрузки и электромагнитную защиту от короткого замыкания, которая мгновенно срабатывает и выключает двигатель при превышении тока уставки в 10-20 раз.

Данные устройства используются наиболее широко и при правильной установке и настройке способны с большой долей вероятности защитить электродвигатель и оборудование от поломки и других негативных последствий.

2. Электронные реле защиты двигателей

Данный вид защиты обеспечивает большой выбор различных защит. Основным элементом таких реле является микропроцессор, который анализирует мгновенные значения напряжения и тока и принимает решения на основе заданных настроек. Это может быть выдача сигнала на индикацию либо на отключение двигателя.

3. Термисторы и термореле

Когда по какой-то причине не сработала тепловая защита по перегрузке, последний рубеж обороны — термозащита. Внутрь обмотки устанавливается термочувствительный элемент (как правило, термистор или позистор), который меняет свое сопротивление в зависимости от температуры. При пересечении порога срабатывает соответствующая защита, и двигатель отключается.

Возможно применение более простых дискретных термореле (термоконтактов), которые размыкают контрольную или тепловую цепь, что приводит к аварийной остановке электродвигателя.

4. Преобразователи частоты

Обычно преобразователи частоты располагают несколькими видами защиты – по превышению момента и тока, по превышению напряжения, обрыву фазы и проч. Кроме того, возможно ограничение момента и тока. В этом случае на двигатель будет подаваться напряжение с меньшим уровнем и частотой, если будет обнаружена перегрузка. При этом будет выдано соответствующее сообщение оператору, а двигатель может продолжать работать.

Также производители частотных преобразователей рекомендуют устанавливать защитный автомат на входе ПЧ, тепловое реле на выходе и термисторную защиту.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector