Autoservice-mekona.ru

Автомобильный журнал
2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

1 внешняя скоростная характеристика двигателя способы ее определения

1 внешняя скоростная характеристика двигателя способы ее определения

  • Абитуриенту
  • Студенту
  • Выпускнику
  • Аспиранту
  • Сотруднику
  • Гостю
  • Контакты
  • Версия для слабовидящих
  • English
  • Контакты приемной комиссии
  • Опорный университет
  • Структура
  • Преподаватели
  • Доступная среда
  • Контакты и реквизиты
  • Телефонный справочник
  • Антитеррор
  • План университетского городка
  • Профилактика коронавирусной инфекции
  • История развития

  • Руководство
  • Ученый совет
  • Нормативные документы
  • Сведения об образовательной организации
  • Управления и отделы
  • Государственные закупки

  • Институты
  • Филиалы
  • Колледжи
  • Центры
  • Образовательные программы
  • Магистратура
  • Аспирантура, докторантура
  • Военная подготовка
  • Дополнительное образование
  • Научно-техническая библиотека

  • Научные направления
  • Конференции
  • Конкурсы и гранты
  • Фестиваль науки
  • Организация НИР
  • Диссертационные советы
  • Центры коллективного пользования
  • Научные издания

  • Управление международных коммуникаций
  • Программа «Tempus» и «ERASMUS+»
  • Проект «NanoBRIDGE»
  • Проект «Bridge»
  • Проект «HP»
  • Академия «Cisco»
  • Инновационные предприятия
  • Центр трансфера технологий

  • Воспитательная работа
  • Кураторы
  • Профсоюзы
  • Студенческий клуб
  • Центр карьеры
  • Газета «За инженерные кадры»
  • Спорт и отдых
  • Медицинская помощь

  • НОВОСТИ
  • АНОНСЫ

Год науки и технологий — год новых свершений

В течение всего 2021 года при поддержке государства будут проходить просветительские мероприятия с участием ведущих деятелей науки, запускаться образовательные платформы и конкурсы для всех желающих.

Соглашение о сотрудничестве

В рамках соглашения будет идти подготовка кадров для газовой отрасли региона, организация совместных научно-исследовательских мероприятий, повышением квалификации сотрудников «Газпром трансгаз Саратов».

Что такое мощность двигателя, крутящий момент и удельный расход топлива

Изобретенный более 100 лет назад поршневой двигатель внутреннего сгорания (ДВС), на сегодняшний день все еще является самым распространенным в автомобилестроении. При выборе модели двигателя своего будущего автомобиля покупатель может предварительно ознакомиться с его основными характеристиками. В этой статье мы подробно расскажем об основных показателях двигателей внутреннего сгорания, что они собой представляют и как влияют на работу.

  1. Основные показатели двигателя
  2. Что такое мощность двигателя
  3. Виды мощности
  4. Как узнать мощность двигателя автомобиля
  5. Что такое крутящий момент
  6. Что такое расход (удельный расход) топлива
  7. Внешняя скоростная характеристика (ВСХ)
  8. Роль мощности и крутящего момента двигателя

Основные показатели двигателя

Сгорание топлива происходит внутри ДВС, в специальной камере цилиндра. Это приводит в движение поршень, который, совершая циклические возвратно-поступательные движения, проворачивает коленчатый вал. Таков упрощенный принцип работы любого поршневого двигателя внутреннего сгорания.

Основные характеристики ДВС можно оценить тремя основными показателями:

  • мощность двигателя;
  • крутящий момент;
  • расход топлива.

Основные показатели ДВС

Рассмотрим более подробно каждый из этих показателей.

Что такое мощность двигателя

Под мощностью следует понимать физическую величину, которая показывает совершаемую двигателем работу за единицу времени. При вращательном движении мощность определяется как произведение крутящего момента на угловую скорость вращения коленчатого вала. Обычно она указывается в лошадиных силах (л.с.), но встречается измерение и в кВт.

Существует несколько единиц измерения под названием «лошадиная сила», но, как правило, имеется в виду так называемая «метрическая лошадиная сила», которая равная ≈ 0,7354 кВт. А вот в США и Великобритании лошадиные силы, касающиеся автомобилей, приравнивают к 0,7456 кВт, то есть как 75 кгс*м/с, что приблизительно равно 1,0138 метрической.

  • 1 кВт = 1,3596 л.с. (для метрического исчисления);
  • 1 кВт = 1,3783 hp (английский стандарт);
  • 1 кВт = 1,34048 л.с. (электрическая «лошадка»).

Если же конвертировать мощность 1 лошадиной силы в киловатты (в промышленности или энергетике), то она будет примерно равна 0,746 кВт. Понятие лошадиная сила не входит в международную систему измерений (СИ), поэтому измерение мощности в кВт будет более правильным.

Чем больше мощность, тем большую скорость сможет развить автомобиль.

Виды мощности

Для определения характеристик двигателя применяют такие понятия мощности как:

  • индикаторная;
  • эффективная;
  • литровая.

Индикаторной называют мощность, с которой газы давят на поршень. То есть, не учитываются никакие другие факторы, а только давление газов в момент их сгорания. Эффективная мощность, эта та сила, которая передается коленчатому валу и трансмиссии. Индикаторная будет пропорциональной литражу двигателя и среднему давлению газов на поршень.

Эффективная мощность двигателя будет всегда ниже индикаторной.

Также есть параметр, называемый литровой мощность двигателя. Это соотношение объема двигателя к его максимальной мощности. Для бензиновых моторов литровая мощность составляет в среднем 30-45 кВт/л, а у дизельных – 10-15 кВт/л.

Как узнать мощность двигателя автомобиля

Конечно, значение можно посмотреть в документах на машину, но иногда требуется узнать мощность автомобиля, который подвергался тюнингу или давно находится в эксплуатации. В таких случаях не обойтись без динамометрического стенда. Его можно найти в специализированных организациях и на станциях техобслуживания. Колеса автомобиля помещаются между барабанами, создающими сопротивление вращению. Далее имитируется движение с разной нагрузкой. Компьютер сам определит мощность двигателя. Для более точного результата может понадобиться несколько попыток.

Читать еще:  Чертежи стенда для ремонта двигателя своими руками чертежи

Что такое крутящий момент

Крутящий момент двигателя рассчитывается по формуле: M = F*R, где F – это сила, с которой давит поршень, R – длина плеча (рычага). В нашем случае плечом будет расстояние от оси вращения коленчатого вала до места крепления шатунной шейки. Этот параметр измеряется в ньютонах на метр (Hм). 1H соответствует 0,1 кг, который давит на конец рычага длиной в метр.

Крутящий момент ДВС характеризует показатель силы вращения коленчатого вала и определяет динамику разгона автомобиля.

Что такое расход (удельный расход) топлива

Удельный расход топлива двигателя – это количество топлива, затрачиваемое для производства определенного количества энергии. Чем расход ниже, тем рациональнее будет использоваться топливо. Расход связан с эффективностью двигателя. Один двигатель может иметь разный расход топлива в зависимости от скорости и нагрузки.

Внешняя скоростная характеристика (ВСХ)

Внешняя скоростная характеристика двигателя показывает зависимость мощности, расхода топлива и крутящего момента от числа оборотов коленвала. Все эти параметры показываются графически в виде кривых.

Внешняя скоростная характеристика

На рисунке можно видеть кривые с обозначениями Pe – мощность двигателя, – крутящий момент, ge – удельный расход топлива. Как видно, с ростом числа оборотов и мощности увеличивается расход топлива. Крутящий момент растет до определенного уровня, а затем идет на спад. В точке, где наиболее эффективный крутящий момент и мощность двигателя, будет самый оптимальный показатель расхода топлива.

Производители моторов борются за то, чтобы максимальный крутящий момент двигатель развивал в как можно более широком диапазоне оборотов («полка крутящего момента была шире»), а максимальная мощность достигалась при оборотах, максимально приближенных к этой полке. Такой двигатель и из болота вытянет, и в городе позволяет быстро ускоряться.

Внешняя скоростная характеристика дает оценку динамическим характеристикам автомобиля, определяет КПД и топливный расход при разных параметрах.

Высокий крутящий момент на более низких оборотах увеличивает тяговую силу агрегата, грузоподъемность и проходимость.

Роль мощности и крутящего момента двигателя

Для обеспечения лучших динамических показателей двигателя, производители стараются наделить силовой агрегат максимальным крутящим моментом, который будет достигаться в более широком значении оборотов двигателя.

Чтобы правильно оценить роль этих двух понятий, стоит обратить внимание на следующие факты:

  • Взаимосвязь мощности и крутящего момента можно выразить в формуле: P = 2П*M*n, где Р – это мощность, M – показатель крутящего момента, а n – количество оборотов коленвала в единицу времени.
  • Крутящий момент более конкретный показатель характеристики двигателя. Низкий крутящий момент (даже при высокой мощности) не позволит реализовать потенциал двигателя: имея возможность разогнаться до высокой скорости, автомобиль будет достигать этой скорости невероятно долго.
  • Мощность двигателя будет возрастать с повышением оборотов: чем выше, тем больше мощность, но до определенных пределов.
  • Крутящий момент увеличивается с повышением количества оборотов, но при достижении максимального значения показатели крутящего момента снижаются.
  • При равных показателях мощности и крутящего момента более эффективным будет двигатель с меньшим расходом топлива.

Раздел 5. Расчет теоретических характеристик двигателя

РАСЧЕТ ТЕОРЕТИЧЕСКИХ
ХАРАКТЕРИСТИК ДВИГАТЕЛЯ

Энергия, вырабатываемая двигателями внутреннего сгорания, используется потребителями (тракторами и автомобилями) с самым различным характером изменения потребляемой мощности, который определяется условиями их эксплуатации.

Двигатель должен работать в широком диапазоне изменения частоты вращения и мощности (крутящего момента). Этот диапазон определяется допустимыми условиями работы двигателя и потребителя и может быть ограничен различными факторами: тепловой и механической напряженностью деталей двигателя, условиями протекания рабочего процесса и др. Например, минимальный допустимый скоростной режим определяется условиями устойчивой работы двигателя.

На каждом скоростном режиме эффективная мощность (крутящий момент) двигателя может изменяться от нуля (холостой ход) до максимального значения, которое может развивать двигатель.

Мощность при заданном скоростном режиме изменяют органом управления. Таким органом в бензиновом двигателе является дроссельная заслонка, а в дизелях – специальное устройство топливного насоса, при помощи которого изменяют подачу топлива за цикл. Каждому положению органа управления соответствует вполне определенная характеристика изменения мощности или крутящего момента в зависимости от частоты вращения.

Имея подобные характеристики для нескольких положений органа управления, можно получить все поле возможных режимов работы двигателя.

Для оценки динамических и экономических показателей тракторных и автомобильных двигателей, а также транспортных средств в целом, на которые они устанавливаются, необходимо знать характер изменения их основных показателей в функции частоты вращения коленчатого вала или нагрузки:

Ne ,Gт , ge и Mк = f(n) или Gт , ge , и n = f(Ne).

При отсутствии реальных, полученных экспериментальным путем, характеристик прибегают к их отысканию расчетным путем.

Читать еще:  Asphalt 8 какие двигатели для каких машин

При построении теоретических (расчетных) характеристик двигателя могут быть применены следующие способы.

1. Применяют закон изменения всех показателей, которые обычно оцениваются при проведении теплового расчета, а именно:

Ра, Рz, Тс, Тс’, a , hv , Tz , n1, n2, x

в функции от частоты вращения или нагрузки.

Исходя из этих данных, проводят для нескольких (пяти-семи) значений частоты вращения n тепловые расчеты двигателя (расчеты рабочего цикла), основные размеры которого определены для номинального режима работы. На основании данных, полученных из тепловых расчетов, строят кривые: Ne ,Gт , ge и Mк = f(n) или Gт , ge , и n = f(Ne).

2. Используют эмпирические зависимости, для которых исходными данными являются показатели номинального режима работы двигателя, полученные из теплового расчета.

Первый способ связан с большим объемом расчетных операций, что обуславливает целесообразность его применения с использованием ЭВМ. При этом необходим большой объем информации по характеру (закономерности) изменения целого ряда исходных параметров, величина которых меняется в функции частоты вращения и мощности двигателя.

Второй способ построения характеристик сводится к воспроизведению среднестатистической геометрической формы кривых и как следствие этого не требует большого объема расчетных работ.

Построение внешней скоростной и регуляторной характеристик двигателя по второму способу рассмотрим раздельно с использованием ниже указанных значений частот вращения (мин -1):

nmin – минимальная устойчивая частота вращения, которая достигается при полной нагрузке без риска остановки двигателя;

— номинальная частота вращения вала двигателя;

nN — частота вращения вала двигателя, которой соответствует максимальное значение мощности Ne max ;

nM — частота вращения вала двигателя при максимальном значении крутящего момента Mк max ;

nх max — максимальная частота вращения при работе двигателя на холостом ходу;

nразн — максимально возможная частота вращения вала двигателя, которая может быть достигнута на холостом ходу при положении органа управления режимом работы, соответствующем максимальному (полное открытие дроссельной заслонки бензинового ДВС или постоянное положение рейки топливного насоса высокого давления дизеля), так называемый «разносный» режим работы.

Предельные значения частот вращения ( мин-1) характерных скоростных режимов для различных двигателей приведены в таблице 1.

Таблица 1

(0,4…0,7) nн

(0,5…0,8) nн

nх max

(1,05…1,15) nн

(1,05…1,1) nн

nразн

(1,5…2) nн

Построение внешней скоростной характеристики двигателя.

Скоростной характеристикой двигателя называется зависимость мощностных (Ne, Мк, Ре) , экономических (Gт , ge) , токсических и других показателей двигателя от частоты вращения коленчатого вала при постоянном положении органа управления режимом его работы.

Характеристика двигателя, полученная при полном открытии дроссельной заслонки (для бензинового ДВС) или положении рычага управления топливного насоса высокого давления (ТНВД) на упоре (для дизеля), называется внешней, а при промежуточном их положении – частичной скоростной характеристикой.

Построение внешней скоростной характеристики для автомобильных бензиновых двигателей и дизелей проводится в диапазоне частот вращения от nmin до .

При известных (предварительно определенных тепловым или тяговым расчетом) значений номинальной (максимальной) мощности Ne н (Ne max ) и соответствующих им частот вращения (nN ), расчетные значения эффективной мощности двигателя Ne ,кВт, для произвольного (в пределах рабочей зоны характеристики) значения частоты вращения вала n, мин-1 , могут быть определены по следующим эмпирическим зависимостям:

для бензиновых двигателей

Ne = Ne max n / nN [ 1 + n / nN – (n / nN)2 ] ; (1)

для дизелей с неразделенными камерами сгорания

Ne = Ne н n / nн [ 0,87 + 1,13 n / nн (n / nн)2] ; (2)

для дизелей с вихревой камерой сгорания

Ne = Ne н n / nн [ 0,7 + 1,13 n / nн (n / nн)2] . (3)

В приведенных выше выражениях Ne max и Ne н – соответственно максимальная и номинальная (определенная тепловым или тяговым расчетом) эффективная мощность, кВт для соответствующей частоты вращения вала двигателя .

Обычно для бензиновых двигателей Ne max = (1,04…1,08) Ne н , а соответствующая этой мощности частота вращения вала nN = (0,8…0,95) .

Если максимальная эффективная мощность двигателя равна номинальному значению (для бензиновых ДВС с ограничением предельной частоты вращения и для всех дизелей), то Ne max = Ne н и nN = .

Для автомобильных бензиновых двигателей можно пользоваться также единой (статистической) относительной скоростной характеристикой, которая представляет собой кривую изменения отношения Ne / Ne max (или Ne / Ne н для случая наличия ограничения предельной частоты вращения, когда Ne max = Ne н), а также ge/ge N (или ge/ge н) в функции n /nN ( или n /). Эти отношения в табличной форме представлены ниже:

Таблица 2

n /nN (n /), %

ge/ge N (ge/ge н), %

Nе / Ne max(Ne / Ne н) , %

Для четырехтактных дизелей соотношения между относительными значениями частоты вращения вала и мощностью следующие:

Здесь n – задаваемое (в пределах рабочей зоны) для каждого расчетного режима значение частоты вращения коленчатого вала двигателя.

Читать еще:  Что бы двигатель на классике не ел масло

Таблица 3

Ne / Ne н , %

По расчетным значениям мощности строится кривая, отображающая функцию Ne = f(n).

Кривая, отображающая характер изменения крутящего момента Мк = f(n), строится согласно выражению

Мк = 9550 Ne/n . (4)

Удельный эффективный расход топлива ge , г /(кВт . ч), может быть определен по приведенной выше таблице 2 (для бензиновых двигателей) или по следующим эмпирическим зависимостям:

для бензиновых двигателей

ge = geN [ 1,2 — n / nN + 0,8 (n / nN)2 ] ; (5)

ge = geн [ 1,55 1,55 n / nн + (n / nн)2 ] , (6)

где geN , geн , г /(кВт . ч) – соответственно удельный эффективный расход топлива при максимальной и номинальной мощностях.

Для бензиновых двигателей geN =(0,85…0,95) geн .

Часовой расход топлива, кг/ч , определяется по формуле:

Gт = ge . Ne . 10-3 . (7)

Обычно полученные при выполнении расчетов данные для удобства построения кривых внешней скоростной характеристики двигателя предварительно заносятся в таблицу.

n, мин-1

Ne, кВт

Мк, Н.м

Gт , кг/ч

ge , г/(кВт.ч)

На рис.1-а и б показаны примеры построения внешних скоростных характеристик бензинового двигателя и дизеля.

По данным построенной характеристики определяется коэффициент приспособляемости двигателя:

к = Мк маx / МкN (8)

Для бензиновых двигателей по внешней скоростной характеристике коэффициент приспособляемости к = 1,1…1,4; для дизелей к = 1,12…1,17. Чем выше коэффициент приспособляемости двигателя, тем лучше динамические качества транспортного средства.

Построение регуляторной характеристики дизеля.

Согласно требованиям ГОСТ 18509-88 внешнюю скоростную характеристику дизеля следует снимать при положении органа управления регулятором частоты вращения, соответствующем номинальному, то есть при положении рычага управления регулятором на упоре.

В реальных условиях эксплуатации автомобильные, тракторные и комбайновые двигатели работают при одновременном изменении нагрузки и частоты вращения коленчатого вала. Автоматическое регулирование подачи топлива в зависимости от изменения внешней нагрузки и, соответственно, частоты вращения, осуществляется всережимным регулятором. Изменение показателей двигателя при работе с регулятором оценивается по регуляторным характеристикам. Регуляторная характеристика является основной паспортной характеристикой.

Регуляторной характеристикой дизеля называется зависимость мощностных (Мк, Ne), экономических (Gт, ge) и других показателей двигателя от частоты вращения вала при фиксированном положении рычага управления регулятором на упоре.

Кроме того, регуляторные характеристики могут быть представлены как зависимость основных показателей двигателя от крутящего момента или от эффективной мощности двигателя.

При положении рычага управления регулятором на упоре максимальной частоты вращения вала получают полную регуляторную характеристику дизеля, оценивающую максимальные мощностные показатели.

При промежуточном положении рычага управления всережимным регулятором изменяется усилие предварительной затяжки пружины регулятора и , соответственно, частота вращения вала и мощность двигателя. Такие характеристики называются частичными регуляторными характеристиками.

Из сказанного выше следует, что параметрами регуляторной характеристики двигателя являются Ne, Мк, Gт, ge. Эти параметры отображаются на графиках регуляторной характеристики в функции частоты вращения вала двигателя n.

При построении регуляторной характеристики в функции нагрузки двигателя Ne параметрами являются Мк, Gт, ge и n.

В каждой регуляторной характеристике различают корректорную и регуляторную ветви. Корректорные ветви соответствуют работе двигателя при n

Построение внешней скоростной характеристики

Внешней скоростной характеристикой двигателя называется зависимость эффективной мощности и эффективного крутящего момента от частоты вращения коленчатого вала при полном открытии дроссельной заслонки [2].

Внешняя скоростная характеристика двигателя имеет следующие характерные точки:

1) ωмах – максимальная угловая частота вращения коленчатого вала двигателя.

2) ωN – угловая частота вращения коленчатого вала, соответствующая максимальной мощности двигателя.

Участок характеристики ωN – ωмах характеризуется повышенными механическими потерями и ухудшенным наполнением цилиндра, поэтому кривая мощности на этом участке падает. Эта часть скоростной характеристики обычно используется только у легковых автомобилей. Обычно принимают ωмах = (1,05-1,25) ωN .

Внешняя скоростная характеристика автомобиля ГАЗ-53А строится до ωмах = 1,2 ωN = 400 .

3) ωМ – угловая частота вращения коленчатого вала, соответствующая максимальному крутящему моменту.

4) Диапазон изменения частоты вращения ωmin = 60…100 является наиболее приемлемым для автомобильных двигателей. Для автомобиля ГАЗ-53А ωmin = 63 .

Для построения кривых эффективной мощности и эффективного крутящего момента двигателя рассчитывают 8 точек [1].

Определение текущих значений мощности производится по формуле:

Ne = Ne max [a— с],

где Ne – текущее значение эффективной мощности двигателя, кВт;

Ne max – максимальная мощность, кВт;

ωе – текущее значение угловой частоты двигателя, ;

ωN – угловая частота вращения при максимальной мощности, ;

а, в, с – постоянные коэффициенты, для данного двигателя

а = 0,667; в = 1,4; с = 1,067.

Ne = 84,8∙[0,667∙+1,4∙— 1,067∙] = 14,2 кВт.

Крутящий момент двигателя определяется по формуле:

Мк = 1000∙, Н∙м

Мк = 1000∙ = 225,4 Н∙м.

Результаты расчёта внешней скоростной характеристики

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector